

BORD NA MÓNA – MONETTIA BOG

Surface Water Monitoring Summary

SURFACE WATER MONITORING SUMMARY

Document status											
Version	Purpose of document	Authored by	Reviewed by	Approved by	Review date						
P01	Issue to Client	МК	EH	MS	02/08/2022						

Approval for issue

MS 2 August 2022

© Copyright RPS Group Limited. All rights reserved.

The report has been prepared for the exclusive use of our client and unless otherwise agreed in writing by RPS Group Limited no other party may use, make use of or rely on the contents of this report.

The report has been compiled using the resources agreed with the client and in accordance with the scope of work agreed with the client. No liability is accepted by RPS Group Limited for any use of this report, other than the purpose for which it was prepared.

RPS Group Limited accepts no responsibility for any documents or information supplied to RPS Group Limited by others and no legal liability arising from the use by others of opinions or data contained in this report. It is expressly stated that no independent verification of any documents or information supplied by others has been made.

RPS Group Limited has used reasonable skill, care and diligence in compiling this report and no warranty is provided as to the report's accuracy.

No part of this report may be copied or reproduced, by any means, without the written permission of RPS Group Limited.

Prepared by: Prepared for:

RPS Bord na Móna

Contents

1	INTF	RODUCTION	1
2	SITE	BACKGROUND	2
3	HYD	PROLOGICAL SETTING	3
	3.1	Surface Water Catchment	
	3.2	Surface Water Quality	3
	3.3	Site Observations	3
	3.4	Flooding	
	3.5	Designated Sites	4
4		FACE WATER LEGISLATION	8
	4.1	Directive 2008/105/EC Setting Environmental Quality Standards in the Field of Water Policy	۶
_	OLID	·	
5		RFACE WATER SAMPLING AND RESULTS	
	5.1 5.2	RPS Surface Water Sampling Bord na Móna Surface Water Sampling	
	5.2	Generic Quantitative Risk Assessment	
	5.4	Results	
	J. T	5.4.1 February 2022	
		5.4.2 March 2022	
		5.4.3 April 2022	
		5.4.4 November 2022	12
		5.4.5 December 2022	13
		5.4.6 January 2023	13
		5.4.7 February 2023	
		5.4.8 March 2023	
		5.4.9 April 2023	
	5.5	Discussion	
	5.6	EPH Trend	
6	CON	ICEPTUAL SITE MODEL	17
7	CON	ICLUSIONS AND RECOMMENDATIONS	
	7.1	Conclusions	
	7.2	Recommendations	18
8	REF	ERENCES	19
Tak	oles		
Table	e 3.1: l	EPA Biological Q-Value Ratings	3
		Historic EPA Q-Value Range for Stations on the Clodiagh (Tullamore) 1978-2021	
Table	e 3.3: l	Designated Sites	4
Table	e 5.1: \$	Surface Water Monitoring Locations	g
		Surface Water Monitoring Events	
		EPH Concentrations in March 2023 (µg/l)	
Table	e 6.1: l	Potential SPR Linkages Assessment	17
Fia	ures		
		Surface Waterbodies Designated Sites	
0		<u> </u>	

SURFACE WATER MONITORING SUMMARY

Figure 5-1: Surface water monitoring locations	10
Figure 5-2: EPH Trends (November 2022 to March 2023)	16

Appendices

Appendix A Laboratory Certificates
Appendix B Surface Water Screening

Page 1

1 INTRODUCTION

This report has been prepared for Bord na Móna in response to a Request for Information (RFI) received from the Environmental Protection Agency (EPA or 'the Agency') on 18th November 2022, in relation to surface water monitoring at Monettia Bog, Ballinvally, Co. Offaly (hereafter referred to as the site).

The RFI sought records (including laboratory reports) and interpretation of all surface water monitoring undertaken by RPS at the site since January 2022. This report includes the results of all updated surface water monitoring (field and lab data) completed by RPS and Bord na Móna to April 2023 (Q2 2023), and an interpretation of the existing hydrological conditions at the site.

The site forms part of the Boora Group Integrated Pollution Control (IPC) licensed bog unit (IPC Reg. No. P0500-01) and has been subject to ongoing monitoring and assessment of associated surface waters for over 20 years.

Bord na Móna are in regular consultation with the EPA concerning the site which is currently the subject of ongoing remediation efforts. The site is currently at 'Stage 2 Corrective Action and Feasibility' of the EPA's Contaminated Land and Groundwater Risk Assessment process. The site's subsurface (soil and groundwater) is impacted by Light Non-Aqueous Phase Liquid (LNAPL) from an historic diesel release. Previous site investigations and monitoring have identified associated dissolved phase hydrocarbon impacts to the underlying shallow sand and gravel aquifer within the central area of the site.

This report should be considered in combination with those previously submitted to the Agency, including:

- Detailed Site Assessment Report, 18th May 2022, RPS Reference: IE000335Rp0002;
- Quantitative Risk Assessment Report, 29th August 2022, RPS Reference: IE000335Rp0003;
- Quarterly Groundwater Monitoring Reports produced by RPS in 2022 and 2023, RPS Reference: IE000335Rp0004; and,
- Previous Surface Water Monitoring Reports produced by RPS, RPS Reference: IE000335Rp0006.

2 SITE BACKGROUND

The Bord na Móna owned Monettia Bog facility is located in Ballinvally, Co. Offaly, approximately 8.2 kilometres (km) south of Tullamore Town. The Offaly / Laois County boundary lies approximately 350m southwest of the site. The site investigation study area of approx. 5.5 hectares (ha) is located on the northwest perimeter of Monettia Bog facility, which has a total approx. area of 682ha, extending approx. 2.5km to the south and 2.3km to the east of the site.

Bord na Móna were notified by Offaly County Council in December 2021 of hydrocarbon impacts to the Clodiagh River, downstream of the site. Upon investigation of potential sources by Bord na Móna and EPA, it was confirmed that hydrocarbons had migrated from the site via the existing buried and surface drains. Bord na Móna undertook immediate measures to remove the existing pathway to surface waters (e.g., disconnect existing pipework and block drains) and also implemented downstream measures including deploying adsorbent boom at outfall locations. Weekly visual inspections of watercourses on and off-site have been ongoing since January 2022. No impacts (i.e., hydrocarbon sheen) have been observed to date, apart from sheen in the isolated (no inlet/outlet) drain approximately 20m west of the workshop building and hardstand. The source of this sheen is likely a combination of surface runoff from the hardstanding (machinery operations, HGV movements) and seepage of impacted groundwater.

Groundwater remediation efforts have been ongoing at the site since October 2022 to reduce the volume of available free product (diesel source) from the water table in the central portion of the site. An automated total fluids pumping system (with off-site treatment) has been in operation since early March 2023. The recovered pumped product-groundwater mix is temporarily stored on site (bunded storage tank) prior to regular removal for off-site treatment at a licensed facility. No fuel or known hazardous chemicals are stored on the site.

RPS conduct monthly groundwater monitoring at the site. Dissolved phase groundwater impacts are assessed quarterly with reports submitted to the Agency. Since RPS involvement in January 2022 there has been no evidence of migration of impacted groundwater to surface waters at the western site boundary. The nearest impacted monitoring well location is approx. 95m east of the site boundary drain.

Bord na Móna ceased operations at the facility in late 2022 and the site is currently in a decommissioning phase. The former workshop building is leased by a 3rd party for use in timber truss assembly.

The site consists of an equipment maintenance workshop, a milled peat tippler transfer station, a rail maintenance building, an inactive refuelling area (3 no. above ground storage tanks), a materials storage shed, a weighbridge, uncovered peat/aggregate storage bays, internal roads and a staff parking area. A disused Bord na Móna railway network extends southeast from the works area into Monettia Bog. The site is also used to temporarily store disused peat harvesting equipment.

Commercial peat harvesting has taken place in some form at the site since the mid 1970's. Bord na Móna ceased commercial peat harvesting operations at Monettia Bog in 2020, with remaining stocks of milled peat expected to be transferred off-site by the end of September 2022.

Agricultural land (rough pasture) adjoins the site to the west, north, northeast and southwest, with the peatland to the south and southeast. Ten No. (10) one-off residential dwellings are located within a 500m radius of the site, situated along the local roads L2002 and L2006 to the north and west. The site topography is relatively flat with a gradual fall to the southwest and elevation is between 80m and 82m above ordnance datum (mAOD).

A series of open drainage channels lie circa (c.) 75m south of the workshop and extend a further c. 320m to the south. Surface water runoff drains north-northeast and northwest via these channels, entering a boundary drain c. 50m west of the workshop. This boundary drain flows to the northwest corner of the site from where it enters a buried culvert and flows west to the Clodiagh River, c. 280m west of the site. The Clodiagh River flows in a general northwest direction and is a tributary to the Brosna River.

3 HYDROLOGICAL SETTING

The regional hydrology has been determined using Geological Survey Ireland (GSI) online Spatial Resources and the EPA's online map viewer.

3.1 Surface Water Catchment

The site is located in the Clodiagh(Tullamore)_SC_010 Water Framework Directive (WFD) sub-catchment within the Lower Shannon WFD Catchment (Hydrometric Area: 25A).

The site is situated in the Clodiagh(Tullamore)_020 (EPA Code: IE_SH_25C060300) WFD River Sub Basin, therefore, surface water at the site is expected to flow west towards the Clodiagh(Tullamore)_020 river waterbody. This river continues north of the site where it eventually joins the Brosna and Lower Shannon which flow towards Lough Derg and the Lower Shannon Estuary (west of Limerick).

The surface waterbodies discussed in this section are displayed in **Figure 3-1**. According to the EPA database, the closest surface waterbody is the Clodiagh River c. 280m west of the site boundary. The outfall location to the Clodiagh River is located at SW102, detailed in **Table 5.1** and **Figure 5-1**.

3.2 Surface Water Quality

The Clodiagh (Tullamore) at EPA Gorteen Bridge monitoring station (RS25C060300) is located approximately 0.8km down-gradient (northwest) of the site. The Water Framework Directive Status (2016-2021) for the Clodiagh (Tullamore) is 'Good' and considered 'Not at Risk' of not achieving WFD objectives.

Q-Values are used by the EPA to express biological water quality, based on changes in the macro invertebrate communities of riffle areas brought about by organic pollution. The higher the pollution level in a watercourse, the lower the Q-value as summarised in **Table 3.1**. The EPA Q-Value for the Clodiagh (Tullamore) at Gorteen Bridge monitoring station is displayed in **Table 3.2**.

Table 3.1: EPA Biological Q-Value Ratings

Quality Ratings (Q)	Status	Water Quality
Q5, Q4-5	High	Unpolluted
Q4	Good	Unpolluted
Q3-4	Moderate	Slightly Polluted
Q3, Q2-3	Poor	Moderately Polluted
Q2, Q1-2, Q1	Bad	Seriously Polluted

Table 3.2: Historic EPA Q-Value Range for Stations on the Clodiagh (Tullamore) 1978-2021

Year	'78	'82	'84	'87	'93	'96	'99	'02	'05	'11	'14	'17	'21
Clodiagh (Tullamore)	5	5	5	4-5	5	4-5	4-5	4-5	4-5	4	4-5	4-5	4-5

The EPA water quality results show that the Clodiagh (Tullamore) has been of 'High' status (unpolluted) from 1978 until 2021, with the exception of 2011 where status was considered 'Good'.

3.3 Site Observations

A series of open drainage channels lie approximately 75m south of the workshop and extend a further c. 320m to the south. Surface water runoff drains north-northeast and northwest via these channels, entering a boundary drain c. 50m west of the workshop. This boundary drain flows to the northwest corner of the site from where it enters a buried culvert and flows west to an outfall at the Clodiagh River, c.280m west of the site. The Clodiagh River flows in a general northwest direction and is a tributary to the Brosna River.

An oil/water interceptor is located at the southeast of the site, on the west side of the 3 no. disused diesel AST's. The outflow pipe from this interceptor runs approximately west across the site to a concrete manhole chamber c.50m to the west. This then discharges to an open drainage channel c.20m west of the workshop building. A section of the buried piping leading from the interceptor was removed, and the outflow from this

rpsgroup.com Page 3

drainage channel was blocked by Bord na Móna in January 2022, preventing further migration of contaminants via this pathway to the boundary drain.

3.4 Flooding

The Office of Public Works (OPW) flood mapping website shows that the site does not reside within river or coastal flood zones. Similarly, the site does not reside in any rainfall (pluvial) flood zones. Furthermore, no past flood events or historic flood zones have been mapped by the OPW on the site.

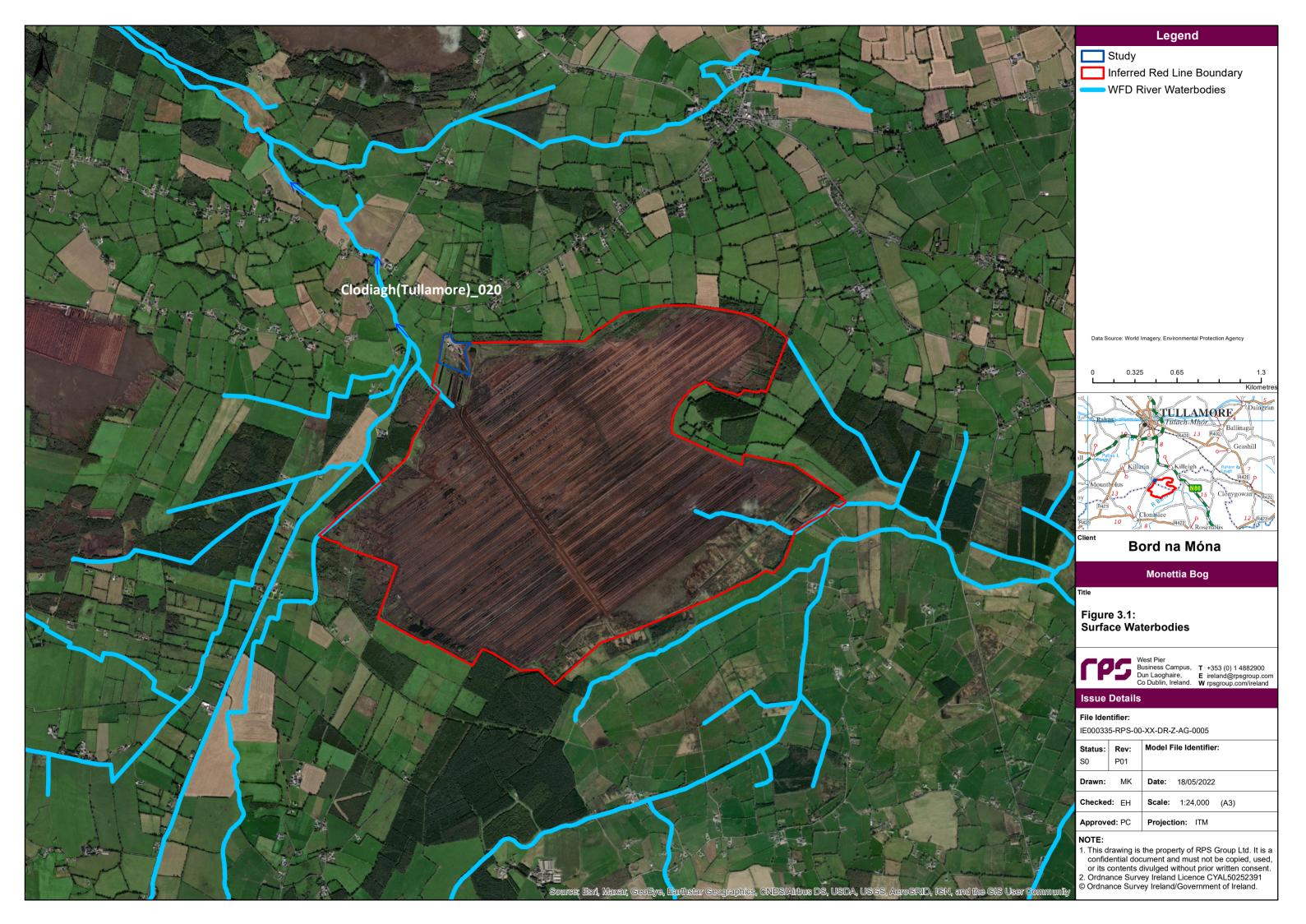
According to the OPW, the Clodiagh River is indicated to have a Low (1-in-a-1000 chance of occurring) to High (1-in-a-10 chance of occurring) probability of flooding, however, this is localised to 20m from the riverbank and does not include the site.

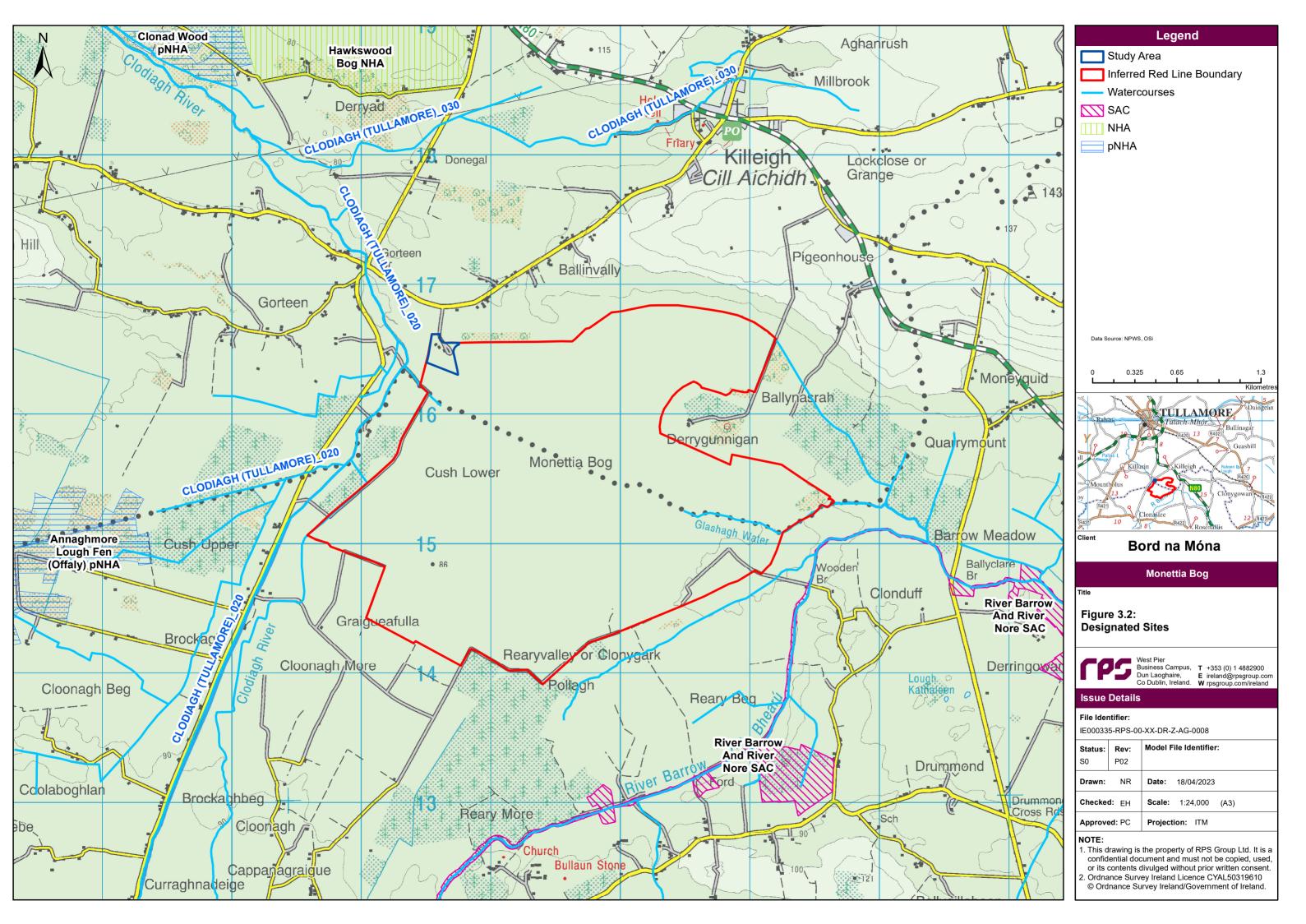
From reviewing all available data, it is concluded that the site is an appropriate development within this area, and there are no flooding or surface water management issues related to the site.

3.5 Designated Sites

Designated sites refer to National Heritage Areas (NHAs) and proposed National Heritage Areas (pNHA) that are deemed to be of national ecological importance and are afforded protection under the Wildlife (Amendment) Act 2000. European designated sites include Special Areas of Conservation (SACs) and Special Protection Areas (SPAs).

The National and European designated sites within 5km of the site are summarised in **Table 3.3** and displayed in **Figure 3-2**.


Table 3.3: Designated Sites


Name	Code	Features of Interest	Hydraulic Connectivity																
European																			
River Barrow and River Nore SAC	002162	 Estuaries [1130] Mudflats and sandflats not covered by seawater at low tide [1140] Reefs [1170] Salicornia and other annuals colonising mud and sand [1310] 	hydrologically separate sub- catchment, and therefore hydraulic connectivity to the																
		 Atlantic salt meadows (Glauco-Puccinellietalia maritimae) [1330] 																	
		 Mediterranean salt meadows (Juncetalia maritimi) [1410] 																	
		 Water courses of plain to montane levels with the Ranunculion fluitantis and Callitricho-Batrachion vegetation [3260] 																	
		European dry heaths [4030]																	
		 Hydrophilous tall herb fringe communities of plains and of the montane to alpine levels [6430] 																	
		 Petrifying springs with tufa formation (Cratoneurion) [7220] 																	
		 Old sessile oak woods with llex and Blechnum in the British Isles [91A0] 																	
																		 Alluvial forests with Alnus glutinosa and Fraxinus excelsior (Alno-Padion, Alnion incanae, Salicion albae) [91E0] 	
		 Vertigo moulinsiana (Desmoulin's Whorl Snail) [1016] 																	
																	 Margaritifera margaritifera (Freshwater Pearl Mussel) [1029] 		
		 Austropotamobius pallipes (White-clawed Crayfish) [1092] 																	
		 Petromyzon marinus (Sea Lamprey) [1095] 																	
		 Lampetra planeri (Brook Lamprey) [1096] 																	

SURFACE WATER MONITORING SUMMARY

Name	Code	Features of Interest	Hydraulic Connectivity
		 Lampetra fluviatilis (River Lamprey) [1099] Alosa fallax fallax (Twaite Shad) [1103] Salmo salar (Salmon) [1106] Lutra lutra (Otter) [1355] Trichomanes speciosum (Killarney Fern) [1421] Margaritifera durrovensis (Nore Pearl Mussel) [1990] 	
Charleville Wood SAC	000571	 Alluvial forests with Alnus glutinosa and Fraxinus excelsior (Alno-Padion, Alnion incanae, Salicion albae) [91E0] Vertigo moulinsiana (Desmoulin's Whorl Snail) [1016] 	
National			
Hawkswood Bog NHA	002355	Peatlands [4]	Surface feature and therefore not hydraulically connected to the site.
Screggan Bog NHA	000921	Peatlands [4]	Surface feature and therefore not hydraulically connected to the site.
Annaghmore Lough Fen (Offaly)	000413	-	Surface feature and therefore not hydraulically connected to the site.
Clonad Wood	000574	-	Surface feature and therefore not hydraulically connected to the site.

The River Barrow and River Nore Special Area of Conservation (SAC) lies c. 3.9km to the southeast of the site. The Charleville Wood SAC is located c. 5.7km northwest of the site. Potential hydrologic connectivity exists between the site and Charleville Wood SAC via the Clodiagh River.

4 SURFACE WATER LEGISLATION

4.1 Directive 2008/105/EC Setting Environmental Quality Standards in the Field of Water Policy

The directive sets Environmental Quality Standards (EQSs) for priority substances and eight other pollutants. These substances include the metals (cadmium, lead, mercury and nickel, and their compounds), benzene, polyaromatic hydrocarbons (PAH), and several pesticides.

The EQSs in Directive 2008/105/EC are limits on the concentration of pollutants in water. The stated thresholds must not be exceeded if a good chemical status is to be met. The EQSs are different for:

- Inland surface waters (rivers and lakes); and,
- Other surface waters (transitional, coastal and territorial waters).

European Union countries must ensure compliance with the EQSs. They must also take measures to ensure that the concentrations of substances that tend to accumulate in sediment and/or water do not increase significantly.

There have been two amendments to the Directive, these include:

- S.I. No. 386 of 2015: European Union Environmental Objectives (Surface Waters) (Amendment) Regulations 2015; and,
- S.I. No. 77 of 2019: European Union Environmental Objectives (Surface Waters) (Amendment) Regulations 2019.

rpsgroup.com Page 8

5 SURFACE WATER SAMPLING AND RESULTS

RPS have conducted three (3 no.) surface water (SW) monitoring events, with samples taken on 12th February, 1st March, and 13th April 2022, from the four (4 no.) monitoring locations identified in **Figure 5-1** and detailed in **Table 5.1**.

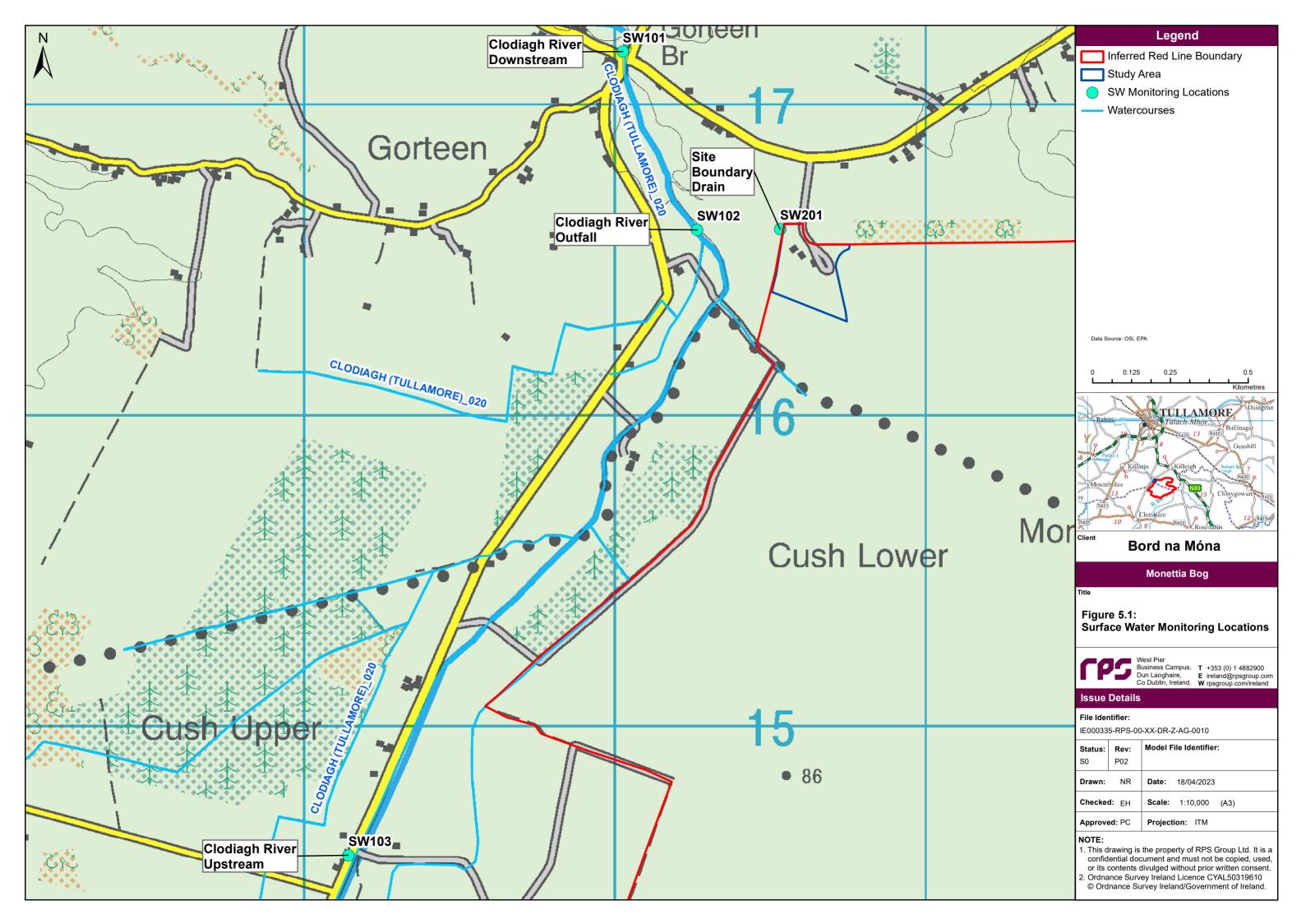
Bord na Móna have conducted five (5 No.) SW monitoring events with samples taken on 29th November 2022, 15th December 2022, 31st January 2022, 22nd February 2023 and 18th April 2023 from the same four (4 no.) monitoring locations.

The schedule of surface water monitoring events are detailed in **Table 5.2**.

Table 5.1: Surface Water Monitoring Locations

ID Ref.	Location Description	Coordinates (ITM)
SW101	Clodiagh (Tullamore) River at Gorteen Bridge, located approximately 800m down-gradient (northwest) of the site. Sample point at northwest (downstream) side of L2002 road bridge. Sample point located approx. 600m downstream from the site discharge point (SW102).	
SW102	Clodiagh (Tullamore) River at site outfall (concrete culvert), located approx. 300m down-gradient (west) of the site. Sample point located on east bank immediately downstream of concrete culvert discharge point.	
SW103	Clodiagh (Tullamore) River , located approx. 2.3km up-gradient (southwest) of the site in Cush Upper, Co. Laoise. Sample point located approx. 20m upstream (south) of existing L6007 road bridge.	
SW201	Site boundary drain (western boundary), located at northwest corner of site. Sample point located approx. 70m northwest of workshop building, immediately upstream of entry to culvert. On-site drains and retention ponds discharge directly to this un-named stream.	

Table 5.2: Surface Water Monitoring Events


ID Ref.	12/02/2022	01/03/2022	13/04/2022	29/11/2022	15/12/2022	31/01/2023	22/02/2023	18/04/2023
SW101								
SW102								
SW103								
SW201								

Key:

Monitoring undertaken by RPS Monitoring undertaken by Bord na Móna

rpsgroup.com

5.1 RPS Surface Water Sampling

Surface water samples taken by RPS were sent to Element in Deeside, UK for analysis. The accreditations and approvals for this facility can be found on Element's website (https://www.element.com/locations/europe/deeside).

Surface water samples were submitted for analysis to Element in Deeside, UK (accredited laboratory) for the following parameters:

- Extractable Petroleum Hydrocarbons (EPHs);
- Gasoline Range Organics (GROs);
- Volatile Organic Compounds (VOCs) and Tentatively Identified Compounds (TICs);
- Semi Volatile Organic Compounds (SVOCs) and TICs;
- Metals (Dissolved Arsenic, Barium, Beryllium, Boron, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Selenium, Vanadium and Zinc);
- Polycyclic Aromatic Hydrocarbons (PAHs);
- pH;
- Conductivity;
- Chemical Oxygen Demand (COD);
- Total Suspended Solids; and,
- Turbidity.

The surface water samples were taken in accordance with industry best practice and RPS' standard sampling protocol. The appropriate PPE (i.e. gloves) were used throughout sampling. Samples were collected in laboratory supplied containers and stored in chilled cool boxes following sampling and during transit to the laboratory. A rigorous chain of custody procedure was used during the sampling and transport of samples.

5.2 Bord na Móna Surface Water Sampling

Surface water samples taken by Bord na Móna were sent to Complete Laboratory Solutions (CLS), Galway, Ireland. The accreditations and approvals for this facility can be found on CLS's website (https://cls.ie/services/).

The surface water samples submitted by Bord na Móna were analysed for the following parameters:

- Extractable Petroleum Hydrocarbons (EPHs) (C8-C40, Diesel Range and Lube Oil);
- Petrol Range Organics (PRO) (C5-C12)
- Volatile Organic Compounds (VOCs) and Tentatively Identified Compounds (TICs);
- Semi Volatile Organic Compounds (SVOCs) and TICs;
- Metals (Dissolved Arsenic, Barium, Beryllium, Boron, Cadmium, Chromium (total, III and hexavalent),
 Copper, Lead, Mercury, Nickel, Selenium, Vanadium and Zinc);
- Polycyclic Aromatic Hydrocarbons (PAHs) Total 16;
- pH;
- Conductivity;
- Chemical Oxygen Demand (COD);
- Suspended Solids; and,
- Turbidity.

5.3 Generic Quantitative Risk Assessment

The surface water results were screened against the applicable 2019 Environmental Quality Standards (EQS) for inland water bodies.

Surface water samples submitted by RPS were sent to Element for analysis and surface water samples submitted by Bord na Móna were sent to CLS for analysis. The laboratory certificates are provided in **Appendix A** and the screened surface water results are displayed in **Appendix B**.

Laboratory analysis of samples taken from all locations to date including the Clodiagh River (downstream of the site at Gorteen Bridge) have not exceeded the 2015 EQS for analytes including dissolved metals, PAHs, VOCs, semi-volatile organics (SVOCs), GRO/PRO and EPH.

5.4 Results

5.4.1 February 2022

Surface waters from SW101 (Gorteen Bridge) taken on 17th February 2022 were analysed by Element.

Dissolved barium and boron concentrations were detected in SW101, there are no surface water Environmental Quality Standards for inland surface waters for these parameters. All other metals were below the laboratory Limit of Detection (LoD).

PAH concentrations were below the laboratory LoD.

GRO and EPH concentrations in SW101 were below the laboratory LoD.

VOC and SVOC concentrations in SW101 were below the laboratory LoD.

5.4.2 March 2022

Surface waters from SW201 (Boundary Drain) taken on 1st March 2022 were analysed by Element.

Dissolved barium concentrations were detected in SW101, there are no surface water Environmental Quality Standards for inland surface waters for this parameter. All other metals were below the laboratory Limit of Detection (LoD).

PAH concentrations were below the laboratory LoD.

GRO and EPH concentrations in SW201 were below the laboratory LoD.

VOC and SVOC concentrations in SW201 were below the laboratory LoD.

5.4.3 April 2022

Surface waters from SW101 (Clodiagh - Downstream), SW102 (Clodiagh - Outfall), SW103 (Clodigh - Upstream) and SW201 (Site Boundary Drain) taken on 13th April 2022 were analysed by Element.

Dissolved barium concentrations were detected at SW101, SW102, SW103 and SW201, and dissolved boron concentrations were detected in SW102 and SW201. There are no surface water Environmental Quality Standards for inland surface waters for these parameters. All other metals were below the laboratory Limit of Detection (LoD).

PAH concentrations were below the laboratory LoD.

GRO and EPH concentrations in SW101, SW102, SW103 and SW201 were below the laboratory LoD.

VOC and SVOC concentrations in SW101, SW102, SW103 and SW201 were below the laboratory LoD.

5.4.4 November 2022

Surface waters from SW101, SW103 and SW201 taken on 29th November 2022 were analysed by CLS.

Dissolved arsenic concentrations were detected in SW101 and SW201, dissolved barium concentrations were detected in SW101, SW103 and SW201, dissolved boron concentrations were detected in SW101 and SW201

IE000335 | BORD NA MÓNA – MONETTIA BOG | P01 | IE000335Rp0006C

SURFACE WATER MONITORING SUMMARY

and dissolved selenium concentrations were detected in SW101. There are no surface water EQS for inland surface waters for these parameters.

Dissolved nickel concentrations were detected in SW101, SW103 and SW201, however, the concentrations were below the SW EQS.

All other metals were below the laboratory LoD.

PAH concentrations were below the laboratory LoD.

PRO was detected in SW201 (44ug/l). EPH concentrations were detected in SW101 (66ug/l), SW103 (34ug/l) and SW201 (58ug/l). There are no surface water Environmental Quality Standards for inland surface waters for these parameters.

VOC and SVOC concentrations in SW101, SW103 and SW201 were below the laboratory LoD.

5.4.5 December 2022

Surface waters from SW101, SW103 and SW201 taken on 15th December 2022 were analysed by CLS.

Dissolved arsenic concentrations were detected in SW101 and SW201, dissolved barium concentrations were detected in SW101, SW103 and SW201, dissolved boron concentrations were detected in SW101 and SW201, dissolved selenium concentrations were detected in SW101 and SW201 and dissolved zinc concentrations were detected in SW101 and SW201. There are no surface water Environmental Quality Standards for inland surface waters for these parameters.

Dissolved nickel concentrations were detected in SW101 and SW201, however, the concentrations were below the SW EQS.

All other metals were below the laboratory Limit of Detection (LoD).

PAH concentrations were below the laboratory LoD.

PRO concentrations were below the laboratory LoD.

EPH concentrations were detected in SW101 (189ug/l), SW103 (153ug/l) and SW201 (158ug/l). There are no surface water EQS for inland surface waters for these parameters.

Dichloromethane (VOC) concentrations were detected in SW101 (1.57ug/l), SW103 (1.95ug/l) and SW201 (1.99ug/l), however, these concentrations are below the SW EQS (20ug/l). All other VOC concentrations in SW101, SW103 and SW201 were below the laboratory LoD.

SVOC concentrations in SW101, SW103 and SW201 were below the laboratory LoD.

5.4.6 January 2023

Surface water samples were collected at SW101, SW102, SW103 and SW201 by Bord na Móna on 31^{st} January 2023, and submitted to CLS for analysis.

Dissolved arsenic concentrations were detected in SW101, SW102 and SW201, dissolved barium concentrations were detected in SW101, SW102, SW103 and SW201, dissolved boron concentrations were detected in SW101, SW102 and SW201 and dissolved selenium concentrations were detected in SW102 and SW201. There are no surface water EQS for inland surface waters for these dissolved metals.

Dissolved nickel concentrations were detected in SW101, SW102 and SW201, however, the concentrations were below the SW EQS.

All other dissolved metals were below the laboratory LoD.

PAH concentrations were below the laboratory LoD.

PRO (C5-C12) concentrations were below the laboratory LoD of 10ug/l.

EPH concentrations were detected in SW101 (20ug/l), SW102 (18ug/l), SW103 (18ug/l) and SW201 (31ug/l). There are no surface water EQS for inland surface waters for these parameters.

VOC and SVOC concentrations in SW101, SW102, SW103 and SW201 were below the laboratory LoD.

5.4.7 February 2023

Surface waters from SW101, SW102, SW103 and SW201 taken on 22nd February 2023 by Bord na Móna were analysed by CLS.

Dissolved arsenic was detected above the LoD in SW201 (1ug/l), dissolved barium was detected above the LoD in SW101 (157ug/l), SW102 (149ug/l), SW103 (152ug/l) and SW201 (194ug/l), dissolved boron was detected above the LoD at SW101 (11ug/l), SW102 (11ug/l) and SW201 (18ug/l), total dissolved chromium was detected in SW102 (1ug/l), and dissolved selenium was detected in SW201 (1ug/l). There are no surface water EQS for inland surface waters for these parameters.

Dissolved nickel was detected in SW101, SW102 and SW201, however, the reported concentrations were below the SW EQS of 20ug/l.

All other metals were below the laboratory Limit of Detection (LoD).

There were no detections reported for PAHs above the laboratory LoD at SW101 and SW201. Naphthalene was detected at SW102 (0.012ug/l) and SW103 (0.013µg/l); these values are below the SW EQS for naphthalene (2.4µg/l).

PRO concentrations were below the laboratory LoD at SW101 and SW103. PRO was detected at SW102 and SW201 at 13 and 16µg/L, respectively. There is no SW EQS value for PRO.

EPH concentrations were detected in SW101 (33ug/l), SW102 (37ug/l), SW103 (36ug/l) and SW201 (43ug/l). There are no surface water Environmental Quality Standards for inland surface waters for these parameters.

VOC and SVOC concentrations in SW101, SW102, SW103 and SW201 were below the laboratory LoD.

5.4.8 March 2023

Samples were taken by Bord na Móna over three consecutive days in early March 2023 at the request of the Agency, in order to further assess the potential for hydrocarbon impacts, i.e., EPH (C8-C40). Samples were submitted to CLS laboratories for EPH analysis only. The results of this monitoring are displayed in Table 5.3.

Table 5.3: EPH Concentrations in March 2023 (µg/l)

Date	SW101	SW102	SW103	SW201
01/03/2023	65	45	69	73
02/03/2023	50	81	92	79
03/03/2023	49	60	56	63

5.4.9 **April 2023**

Surface waters from SW101, SW102, SW103 and SW201 taken on 18th April 2023 by Bord na Móna were analysed by CLS.

Dissolved arsenic was detected above the LoD in SW201 (1ug/l), dissolved barium was detected above the LoD in SW101 (199ug/l), SW102 (165ug/l), SW103 (187ug/l) and SW201 (211ug/l), dissolved boron was detected above the LoD at SW101 (15ug/l), SW102 (14ug/l) and SW201 (20ug/l), and dissolved selenium was detected in SW201 (1ug/l). There are no surface water EQS for inland surface waters for these parameters.

Dissolved nickel was detected in SW101, SW102 and SW201, however, the reported concentrations were below the SW EQS of 20ug/l.

All other metals were below the laboratory Limit of Detection (LoD).

Naphthalene was detected at SW101 (0.021ug/l), SW102 (0.012ug/l), SW103 (0.010µg/l) and SW201 (0.011ug/l); these values are below the SW EQS for naphthalene (2.4µg/l). All other PAH concentrations were below the laboratory LoD.

PRO concentrations were below the laboratory LoD at SW102, SW103 and SW201. PRO was detected at SW101 (10µg/L). There is no SW EQS value for PRO.

EPH concentrations were detected in SW101 (52ug/l), SW102 (78ug/l), SW103 (31ug/l) and SW201 (63ug/l). There are no surface water Environmental Quality Standards for inland surface waters for these parameters.

rpsgroup.com Page 14 VOC and SVOC concentrations in SW101, SW102, SW103 and SW201 were below the laboratory LoD.

5.5 Discussion

The laboratory results reported detections (i.e., values above the analytical LOD [10µg/l]) of hydrocarbon related compounds, specifically EPH in January, February and April 2023 in all four monitoring locations, and PAHs in April 2023 at all four monitoring locations. Other hydrocarbon related compounds e.g., PAHs, VOCs (including BTEX) and SVOCs were below the limit of detection in April 2023.

The Surface Water Regulations, 2019 (S.I. No. 77/2019) EQS for priority hazardous substances in surface waters does not include a total petroleum hydrocarbon value, equivalent to EPH (C8-C40), PRO (C5-C12), or GRO (C4-C12) carbon ranges. EQS values are included in the 2019 Regulations for specific PAH compounds (e.g., naphthalene), however as there were no significant detections of PAH these are not relevant in this case.

The Quality of Salmonid Waters Regulations, 1988 (S.I. No. 293/1988) includes reference to petroleum hydrocarbons, stating that; 'Petroleum products must not be present in such quantities that they: form visible film face on the surface of the water or form coatings on the beds of watercourses and lakes'. Monitoring and inspections undertaken to date have not observed a visible hydrocarbon sheen at any of the monitoring points.

The laboratory (CLS, Galway) which conducted the hydrocarbon analysis was asked to further interpret the results from February and March 2023 and stated the following in relation to the concentrations detected; 'the hydrocarbon levels are extremely low, in the parts per billion (ppb) range, and no evidence of fuels known to us including diesel are evident due to the low levels of detection'.

It is RPS experience that in typical pollution cases where surface waters are impacted by hydrocarbons (e.g., diesel spill) EPH values in waters sampled are often in the hundreds of parts per million (ppm) for a period of time following the release. Concentrations reported to date for downgradient surface water monitoring points have been at least two orders of magnitude below this range.

It is noted that the Clodiagh River runs parallel to the L2006 local road, and the Gorteen Bridge sampling point is immediately downstream of the intersection of the L2006 and L2002 local roads. The Transport Infrastructure Ireland (TII) 2015 publication *Road Drainage and the Water Environment*¹ details concentrations of typical pollutants including specific and Total PAHs observed in road runoff. A mean value is provided for Total PAHs of $7.52\mu g/l$. There were no significant detections for Total PAHs in surface water results to date above the lab LOD of $0.17\mu g/l$.

Reported values above the LoD were noted for dissolved metals including arsenic, barium, boron, nickel and selenium. Dissolved barium concentrations downgradient of the site ranged from 165µg/l to 211µg/l, with an up-gradient value of 199µg/l. There is no EQS for barium. The presence of elevated levels of barium at both up- and down-stream locations relative to the site are indicative of naturally occurring, or other diffuse sources.

Reported values for boron ranged from below the laboratory LoD to $20\mu g/l$. The LoD for boron is $10\mu g/l$ and there is no applicable EQS. There are numerous sources of boron in surface waters, both natural (e.g., rock and soil weathering) and anthropogenic (e.g., wastewater treatment plants). These detections of dissolved barium and boron on their own are not indicative of impacts from a hydrocarbon source.

To date RPS have not observed any visual impacts to surface waters either on-site or off-site. During steady rainfall where significant surface water run-off was visible, there was no sheen or evidence of hydrocarbons at site outfall points.

Groundwater quality within the central area of the site has been identified as having a concentrated LNAPL layer and confirmed dissolved-phase hydrocarbon impacts, including significantly elevated concentrations reported for BTEX, EPH, GRO and PAHs. The results of surface water quality monitoring at the nearest downgradient point to the groundwater plume (SW201, Site Boundary Drain) have not reported significantly elevated concentrations for hydrocarbons to date.

5.6 EPH Trend

The trend of reported Extractable Petroleum Hydrocarbons (EPH) (C8-C40) concentrations at SW101, SW102, SW103 and SW201 from December 2022 to April 2023 is provided in **Figure 5-2**. Slightly elevated

-

¹ Transport Infrastructure Ireland (TII) (2015) Road Drainage and the Water Environment, Report No. DN-DNG-03065, March 2015.

concentrations were reported for EPH during the December 2022 sampling event, at locations both upgradient and downgradient of the site. These detections are likely associated with stormwater runoff from heavy rainfall events (e.g., road runoff). It is likely that low level detections of petroleum hydrocarbons will persist in the Clodiagh River between monitoring points SW101 (downstream at Gorteen Bridge) and SW103 (upstream) of the site for the foreseeable future, due to its proximity to the local road network.

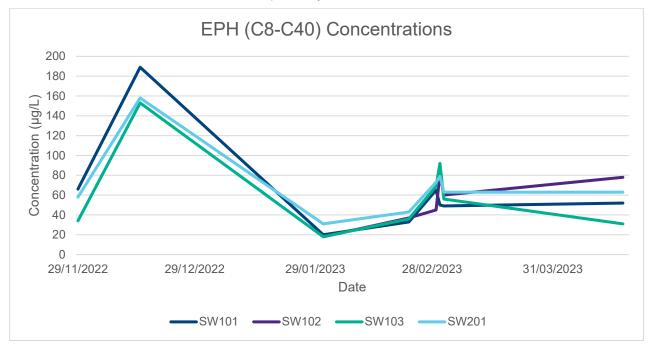


Figure 5-2: EPH Trends (November 2022 to March 2023)

6 CONCEPTUAL SITE MODEL

A Conceptual Site Model (CSM) provides a representation of the biological, physical and chemical processes that create a pollutant linkage from the Source through the environmental media Pathway to a Receptor, a Source-Pathway-Receptor (SPR) linkage. The development of a CSM supports the identification and assessment of pollutant linkages and is revised as a project develops and more information is obtained.

The CSM in relation to hydrological receptors at the site is summarised in **Table 6.1**.

Table 6.1: Potential SPR Linkages Assessment

Source	Pathway	Receptor	Assessment				
	Surface Water Run-Off	Clodiagh River Surface Waterbody	The Clodiagh River is c. 280m west of the site, however, local drainage ditches are likely to intercept surface water and provide natural attenuation before encountering the Clodiagh River. There were no detections of PAHs and VOCs (including BTEX) in the down-gradient surface water monitoring location (SW101).				
		Protected Areas	The River Barrow and River Nore SAC is up-gradient of the site and water from the site is not anticipated to impact this waterbody.				
			The Charleville Wood SAC is down-gradient of the site and is likely hydrologically connected to the site.				
			The distance to the Designated Site will allow for sufficient dilution of surface waters prior to it reaching the SAC.				
and Leaks from on-	Surface Water Run-Off	Clodiagh River Surface Waterbody	Volumes of potentially hazardous substances from on- site vehicles is expected to be minimal as refuelling activities will be of low volumes and undertaken on				
site Vehicles		Protected Areas	hardstanding areas with controls in place, thus limiting the source.				
			There were no detections of PAHs and VOCs (including BTEX) in the down-gradient surface water monitoring location (SW101).				

Page 18

CONCLUSIONS AND RECOMMENDATIONS 7

7.1 **Conclusions**

RPS were requested by Bord na Móna to undertake a review of surface water monitoring carried out between February 2022 and April 2023, and provide a summary report, to include the results of all monitoring events within this period. An interpretation of the existing hydrological conditions at the site and an assessment of potential ecological impacts to the Clodiagh River has also been carried out.

RPS undertook surface water sampling on three separate occasions between 17th February and 13th April 2022, at 4 No. monitoring locations (3 downgradient, 1 upgradient). Bord na Móna conducted five (5 No.) surface water monitoring events with samples taken on 29th November 2022, 15th December 2022, 31st January 2023, 22nd February 2023 and 18th April 2023.

EPH (C8-C40) concentrations have consistently been detected above the lab LoD at all locations since November 2022, with the greatest concentrations recorded in December 2022. The concentrations of EPH reported to date are considered very low, and as such cannot be attributed to a particular hydrocarbon (e.g., diesel). The reported values for petroleum hydrocarbons are not indicative of a significant active pollution source or recent release.

PRO (C5-C12) concentrations above the lab LoD were reported at SW101 in December 2022, and at SW101 April 2023 (upgradient location). The reported concentrations for PRO are considered very low.

There were no exceedances of the applicable EQS for the range of analytes tested.

To date RPS have not observed any visual impacts to surface waters from hydrocarbons (or other sources) either on-site or off-site.

The potential for hydrologic connectivity between the site and Charleville Wood SAC c. 5.7km northwest, via the Clodiagh River was identified. No potential impacts to this SAC or protected species were identified based on the current surface water monitoring data and site activities.

No flooding or surface water management issues were identified relating to the site.

7.2 Recommendations

It is recommended that additional surface water monitoring events be carried out at quarterly intervals, for a further 6-month period, at the 4 No. existing monitoring points. Reporting requirements and further surface water monitoring beyond this period should be discussed with the Agency.

As the contaminant of potential concern on the site is an LNAPL groundwater plume related to an historic diesel release, it is recommended to include analysis via 'total petroleum hydrocarbons criteria working group (TPHCWG)' to the current suite. This will enable a direct comparison between groundwater and surface water quality and allow for more detailed risk assessments to be carried out, should they be required in the future.

The additional parameters and test methods should remain as per previous events, with close attention paid to any significant changes in EPH trends.

Regular visual inspections of the on-site drains, interceptors, and boundary stream should continue, with inspection records maintained.

Operations at the leased Bord na Móna workshop building on-site should be regularly inspected to ensure any potentially hazardous fuels or chemicals are stored in an appropriate manner.

Consideration should be given to completing an Appropriate Assessment for the ongoing groundwater remediation project at the site, given the identified downstream connectivity to Charleville Wood SAC.

rpsgroup.com

8 REFERENCES

RPS Group, 2022. Bórd na Móna – Monettia Bog. Quantitative Risk Assessment Report. IE000335Rp0003.

RPS Group, 2022. Bórd na Móna – Monettia Bog. Detailed Site Assessment Report. IE000335Rp0002.

RPS Group, 2022. Monettia Bog, Co. Offaly Remediation Assessment Report. IE000335Rp0004.

RPS Group, November 2022. Bórd na Móna – Monettia Bog Surface Water Monitoring Summary IE000335Rp0006.

RPS Group, April 2023. Bórd na Móna – Monettia Bog Surface Water Monitoring Summary IE000335Rp0006.

S.I. No. 386 of 2015: European Union Environmental Objectives (Surface Waters) (Amendment) Regulations 2015.

S.I. No. 77 of 2019: European Union Environmental Objectives (Surface Waters) (Amendment) Regulations 2019.

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

RPS

Lyrr 2, IDA Business and Tech Park Galway Ireland H91 H9CK

Attention: Eoin Hurst

Date: 8th March, 2022

Your reference : IE000335

Our reference: Test Report 22/3378 Batch 1

Location : Monettia Bog

Date samples received : 1st March, 2022

Status: Final report

Issue:

One sample was received for analysis on 1st March, 2022 and was scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Phil Sommerton BSc Senior Project Manager

Please include all sections of this report if it is reproduced

RPS Client Name:

IE000335 Reference: Location: Monettia Bog Contact: Eoin Hurst

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

Report: Liquid

	Eoin Hurst			Liquids/pr				e, r –piastic	DOLLIG	
EMT Job No:	22/3378		1	H=H ₂ SO ₄ , A	∠=∠nAc, N=	NaOH, HN=	HNU ₃	ı		
EMT Sample No.	1-5									
Sample ID	SW201									
Depth								Please se	e attached n	otes for all
COC No / misc								abbrevi	ations and a	cronyms
Containers	V HN P G									
Sample Date										
Sample Type	Surface Water									
Batch Number	1							LOD/LOR	Llaita	Method
Date of Receipt	01/03/2022							LOD/LOR	Units	No.
Dissolved Arsenic#	<2.5							<2.5	ug/l	TM30/PM14
Dissolved Barium #	66							<3	ug/l	TM30/PM14
Dissolved Beryllium	<0.5							<0.5	ug/l	TM30/PM14
Dissolved Boron	<12							<12	ug/l	TM30/PM14
Dissolved Cadmium #	<0.5							<0.5	ug/l	TM30/PM14
Total Dissolved Chromium#	<1.5							<1.5	ug/l	TM30/PM14
Dissolved Copper#	<7							<7	ug/l	TM30/PM14
Dissolved Lead #	<5							<5	ug/l	TM30/PM14
Dissolved Mercury#	<1							<1	ug/l	TM30/PM14
Dissolved Nickel#	<2							<2	ug/l	TM30/PM14
Dissolved Selenium #	<3							<3	ug/l	TM30/PM14
Dissolved Vanadium#	<1.5							<1.5	ug/l	TM30/PM14
Dissolved Zinc#	<3							<3	ug/l	TM30/PM14
PAH MS										
Naphthalene #	<0.1							<0.1	ug/l	TM4/PM30
Acenaphthylene #	<0.005							<0.005	ug/l	TM4/PM30
Acenaphthene #	<0.005							<0.005	ug/l	TM4/PM30
Fluorene #	<0.005							<0.005	ug/l	TM4/PM30
Phenanthrene #	<0.005							<0.005	ug/l	TM4/PM30
Anthracene #	<0.005							<0.005	ug/l	TM4/PM30
Fluoranthene #	<0.005							<0.005	ug/l	TM4/PM30
Pyrene#	<0.005							<0.005	ug/l	TM4/PM30
Benzo(a)anthracene #	<0.005							<0.005	ug/l	TM4/PM30
Chrysene#	<0.005							<0.005	ug/l	TM4/PM30
Benzo(bk)fluoranthene #	<0.008							<0.008	ug/l	TM4/PM30
Benzo(a)pyrene#	<0.005							<0.005	ug/l	TM4/PM30
Indeno(123cd)pyrene#	<0.005							<0.005	ug/l	TM4/PM30
Dibenzo(ah)anthracene #	<0.005							<0.005	ug/l	TM4/PM30
Benzo(ghi)perylene#	<0.005							<0.005	ug/l	TM4/PM30
PAH 16 Total #	<0.173							<0.173	ug/l	TM4/PM30
Benzo(b)fluoranthene	<0.008							<0.008	ug/l	TM4/PM30
Benzo(k)fluoranthene	<0.008							<0.008	ug/l	TM4/PM30 TM4/PM30
PAH Surrogate % Recovery	03							<0	%	1 IVI4/PIVI30
VOC TICs	ND								None	TM15/PM10
VOO 1103	IAD								140116	/ IVI I 3/F IVI I U
SVOC TICs	ND								None	TM16/PM30
	.,,,,								. 10116	
GRO (>C4-C8) #	<10							<10	ug/l	TM36/PM12
GRO (>C8-C12)#	<10							<10	ug/l	TM36/PM12
GRO (>C4-C12)#	<10							<10	ug/l	TM36/PM12
(***								-5.	
EPH (C8-C40) #	<10							<10	ug/l	TM5/PM30

22/3378

Client Name: RPS Report : Liquid

Reference: IE000335
Location: Monettia Bog
Contact: Eoin Hurst

EMT Job No:

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

EMI JOB NO:	22/33/8			11=112004, 2	 Naon, nn=	111403				
EMT Sample No.	1-5									
Sample ID	SW201									
Double										
Depth COC No / misc							Please see attached notes for abbreviations and acronyms			
	V HN P G									
Sample Date										
Sample Type										
Batch Number	1									
Date of Receipt							LOD/LOR	Units	Method No.	
Hexavalent Chromium	<6						<6	ug/l	TM38/PM0	
Total Dissolved Chromium III	<6						<6	ug/l	TM0/PM0	
COD (Settled) # Electrical Conductivity @25C #	52 373						<7 <2	mg/l uS/cm	TM57/PM0 TM76/PM0	
pH#	8.26						<0.01	pH units	TM73/PM0	
Total Suspended Solids #	22						<10	mg/l	TM37/PM0	
Turbidity	10.0						<0.1	NTU	TM34/PM0	

Client Name: RPS

Reference: IE000335
Location: Monettia Bog
Contact: Eoin Hurst
EMT Job No: 22/3378

SVOC Report : Liquid

EMT Sample No.	1-5											
EMT Sample No.	1-5											
Sample ID	SW201											
Gample ID	011201											
Depth								Diagon	a attached n	ataa far all		
COC No / misc								Please see attached notes for abbreviations and acronyms				
Containers	VHNPG									•		
Sample Date	25/02/2022 11:40											
Sample Type	Surface Water											
Batch Number	1							LOD/LOR	Units	Method		
Date of Receipt	01/03/2022							LOD/LOR	Offics	No.		
SVOC MS												
Phenols												
2-Chlorophenol #	<1							<1	ug/l	TM16/PM30		
2-Methylphenol #	<0.5							<0.5	ug/l	TM16/PM30		
2-Nitrophenol	<0.5 <0.5							<0.5	ug/l	TM16/PM30 TM16/PM30		
2,4-Dichlorophenol # 2,4-Dimethylphenol	<0.5							<0.5 <1	ug/l ug/l	TM16/PM30		
2,4,5-Trichlorophenol #	<0.5							<0.5	ug/l	TM16/PM30		
2,4,6-Trichlorophenol	<1							<1	ug/l	TM16/PM30		
4-Chloro-3-methylphenol #	<0.5							<0.5	ug/l	TM16/PM30		
4-Methylphenol	<1							<1	ug/l	TM16/PM30		
4-Nitrophenol	<10							<10	ug/l	TM16/PM30		
Pentachlorophenol	<1							<1	ug/l	TM16/PM30		
Phenol	<1							<1	ug/l	TM16/PM30		
PAHs												
2-Chloronaphthalene #	<1+							<1	ug/l	TM16/PM30		
2-Methylnaphthalene #	<1							<1	ug/l	TM16/PM30		
Phthalates	_								-	Th. 4.4 107 1-1		
Bis(2-ethylhexyl) phthalate	<5							<5	ug/l	TM16/PM30		
Butylbenzyl phthalate	<1							<1	ug/l	TM16/PM30 TM16/PM30		
Di-n-butyl phthalate #	<1.5 <1							<1.5	ug/l	TM16/PM30		
Di-n-Octyl phthalate Diethyl phthalate #	<1							<1 <1	ug/l ug/l	TM16/PM30		
Dimethyl phthalate	<1							<1	ug/l	TM16/PM30		
Other SVOCs	7.								ug,			
1,2-Dichlorobenzene #	<1							<1	ug/l	TM16/PM30		
1,2,4-Trichlorobenzene#	<1							<1	ug/l	TM16/PM30		
1,3-Dichlorobenzene #	<1							<1	ug/l	TM16/PM30		
1,4-Dichlorobenzene #	<1							<1	ug/l	TM16/PM30		
2-Nitroaniline	<1							<1	ug/l	TM16/PM30		
2,4-Dinitrotoluene #	<0.5							<0.5	ug/l	TM16/PM30		
2,6-Dinitrotoluene	<1							<1	ug/l	TM16/PM30		
3-Nitroaniline	<1							<1	ug/l	TM16/PM30		
4-Bromophenylphenylether #	<1							<1	ug/l	TM16/PM30		
4-Chloroaniline	<1							<1	ug/l	TM16/PM30 TM16/PM30		
4-Chlorophenylphenylether # 4-Nitroaniline	<1 <0.5							<1 <0.5	ug/l ug/l	TM16/PM30		
Azobenzene #	<0.5							<0.5	ug/l	TM16/PM30		
Bis(2-chloroethoxy)methane #	<0.5							<0.5	ug/l	TM16/PM30		
Bis(2-chloroethyl)ether#	<1							<1	ug/l	TM16/PM30		
Carbazole #	<0.5							<0.5	ug/l	TM16/PM30		
Dibenzofuran #	<0.5							<0.5	ug/l	TM16/PM30		
Hexachlorobenzene #	<1							<1	ug/l	TM16/PM30		
Hexachlorobutadiene #	<1							<1	ug/l	TM16/PM30		
Hexachlorocyclopentadiene	<1							<1	ug/l	TM16/PM30		
Hexachloroethane #	<1							<1	ug/l	TM16/PM30		
Isophorone #	<0.5							<0.5	ug/l	TM16/PM30		
N-nitrosodi-n-propylamine #	<0.5							<0.5	ug/l	TM16/PM30		
Nitrobenzene * Surrogate Recovery 2-Fluorobiphenyl	<1 100							<1	ug/l	TM16/PM30 TM16/PM30		
Surrogate Recovery 2-Fluorobiphenyl Surrogate Recovery p-Terphenyl-d14	109 112							<0 <0	%	TM16/PM30		
	112							~0	70	10/1 19130		
	i	Ì	Ī			l				1		

Client Name: RPS

Reference: IE000335
Location: Monettia Bog
Contact: Eoin Hurst
EMT Job No: 22/3378

VOC Report : Liquid

EMT Job No:	22/3378													
EMT Sample No.	1-5]					
Sample ID	SW201													
Depth									Diago ao	o attached m	otoo for all			
COC No / misc									Please see attached notes for al abbreviations and acronyms					
Containers	V HN P G								i					
Sample Date	25/02/2022 11:40													
Sample Type	Surface Water													
Batch Number	1								LOD/LOR	Units	Method No.			
VOC MS	01/03/2022										INO.			
Dichlorodifluoromethane	<2								<2	ug/l	TM15/PM10			
Methyl Tertiary Butyl Ether #	<0.1								<0.1	ug/l	TM15/PM10			
Chloromethane#	<3								<3	ug/l	TM15/PM10			
Vinyl Chloride #	<0.1								<0.1	ug/l	TM15/PM10			
Bromomethane	<1								<1	ug/l	TM15/PM10			
Chloroethane #	<3								<3	ug/l	TM15/PM10			
Trichlorofluoromethane # 1,1-Dichloroethene (1,1 DCE) #	<3 <3								<3 <3	ug/l ug/l	TM15/PM10			
Dichloromethane (DCM) #	<3								<3	ug/l	TM15/PM10			
trans-1-2-Dichloroethene #	<3								<3	ug/l	TM15/PM10			
1,1-Dichloroethane #	<3								<3	ug/l	TM15/PM10			
cis-1-2-Dichloroethene #	<3								<3	ug/l	TM15/PM10			
2,2-Dichloropropane	<1								<1	ug/l	TM15/PM10			
Bromochloromethane # Chloroform #	<2 <2								<2 <2	ug/l	TM15/PM10			
Chloroform " 1,1,1-Trichloroethane #	<2 <2								<2 <2	ug/l ug/l	TM15/PM10			
1,1-Dichloropropene #	<3								<3	ug/l	TM15/PM10			
Carbon tetrachloride #	<2								<2	ug/l	TM15/PM10			
1,2-Dichloroethane #	<2								<2	ug/l	TM15/PM10			
Benzene#	<0.5								<0.5	ug/l	TM15/PM10			
Trichloroethene (TCE) #	<3								<3	ug/l	TM15/PM10			
1,2-Dichloropropane # Dibromomethane #	<2 <3								<2 <3	ug/l ug/l	TM15/PM10			
Bromodichloromethane #	<2								<2	ug/l	TM15/PM10			
cis-1-3-Dichloropropene	<2								<2	ug/l	TM15/PM10			
Toluene #	<5								<5	ug/l	TM15/PM10			
trans-1-3-Dichloropropene	<2								<2	ug/l	TM15/PM10			
1,1,2-Trichloroethane #	<2								<2	ug/l	TM15/PM10			
Tetrachloroethene (PCE) # 1,3-Dichloropropane #	<3 <2								<3 <2	ug/l ug/l	TM15/PM10			
Dibromochloromethane #	<2								<2	ug/l	TM15/PM10			
1,2-Dibromoethane #	<2								<2	ug/l	TM15/PM10			
Chlorobenzene#	<2								<2	ug/l	TM15/PM10			
1,1,1,2-Tetrachloroethane #	<2								<2	ug/l	TM15/PM10			
Ethylbenzene #	<1								<1	ug/l	TM15/PM10			
m/p-Xylene #	<2 <1								<2 <1	ug/l	TM15/PM10			
o-Xylene [#] Styrene	<1 <2								<1 <2	ug/l ug/l	TM15/PM10			
Bromoform #	<2								<2	ug/l	TM15/PM10			
Isopropylbenzene#	<3								<3	ug/l	TM15/PM10			
1,1,2,2-Tetrachloroethane	<4								<4	ug/l	TM15/PM10			
Bromobenzene#	<2								<2	ug/l	TM15/PM10			
1,2,3-Trichloropropane #	<3								<3	ug/l	TM15/PM10			
Propylbenzene # 2-Chlorotoluene #	<3 <3								<3 <3	ug/l ug/l	TM15/PM10			
1,3,5-Trimethylbenzene #	<3								<3	ug/l	TM15/PM10			
4-Chlorotoluene #	<3								<3	ug/l	TM15/PM10			
tert-Butylbenzene #	<3								<3	ug/l	TM15/PM10			
1,2,4-Trimethylbenzene #	<3								<3	ug/l	TM15/PM10			
sec-Butylbenzene#	<3								<3	ug/l	TM15/PM10			
4-Isopropyltoluene * 1,3-Dichlorobenzene *	<3 <3								<3 <3	ug/l ug/l	TM15/PM10			
1,4-Dichlorobenzene *	<3 <3								<3 <3	ug/l ug/l	TM15/PM10			
n-Butylbenzene#	<3								<3	ug/l	TM15/PM10			
1,2-Dichlorobenzene #	<3								<3	ug/l	TM15/PM10			
1,2-Dibromo-3-chloropropane	<2								<2	ug/l	TM15/PM10			
1,2,4-Trichlorobenzene	<3								<3	ug/l	TM15/PM10			
Hexachlorobutadiene	<3								<3	ug/l	TM15/PM10			
Naphthalene 1,2,3-Trichlorobenzene	<2 <3								<2 <3	ug/l ug/l	TM15/PM10			
Surrogate Recovery Toluene D8	101								<0	/w	TM15/PM10			
Surrogate Recovery 4-Bromofluorobenzene	108								<0	%	TM15/PM10			
J		1	<u> </u>			<u> </u>	<u> </u>	<u> </u>		,				

Client Name: RPS

Reference: IE000335
Location: Monettia Bog
Contact: Eoin Hurst

EMT EMT Sample ID Job Batch Depth Sample Analysis Reason No. No. No deviating sample report results for job 22/3378

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 22/3378

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C. Ash samples are dried at 37°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

EMT Job No.: 22/3378

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

Laboratory records are kept for a period of no less than 6 years.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

Customer Provided Information

Sample ID and depth is information provided by the customer.

ABBREVIATIONS and ACRONYMS USED

Г	
#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range

EMT Job No: 22/3378

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
ТМО	Not available	PM0	No preparation is required.				
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
ТМ5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM15	Modified USEPA 8260B v2:1996. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.				
TM15	Modified USEPA 8260B v2:1996. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM16	Modified USEPA 8270D v5:2014. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM16	Modified USEPA 8270D v5:2014. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev. 2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev. 2, Dec. 1996; Modified EPA Method 3050B, Rev. 2, Dec. 1996	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified				
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec. 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec. 1996; Modified EPA Method 3050B, Rev.2, Dec. 1996	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified	Yes			

EMT Job No: 22/3378

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM34	Turbidity by 2100P Turbidity Meter. complies with EPA 180.1 1993	PM0	No preparation is required.				
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
ТМ37	Solids (TSS) and Volatile Suspended Solids (VSS). Sample is filtered through a 1.5um pore size glass fibre filter and the resulting residue is dried and weighed at 105°C for TSS and Volatile Suspended Solids (TSS) and Volatile Suspended Solids (VSS). Sample is filtered through a 1.5um pore size glass fibre filter and the resulting residue is dried and weighed at 105°C for TSS and ESSS (1955).	PM0	No preparation is required.	Yes			
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013l	PM0	No preparation is required.				
TM57	Modified US EPA Method 410.4. (Rev. 2.0 1993) Comparable with ISO 15705:2002. Chemical Oxygen Demand is determined by hot digestion with Potassium Dichromate and measured spectrophotometerically.	PM0	No preparation is required.	Yes			
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM76	Modified US EPA method 120.1 (1982). Determination of Specific Conductance by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

RPS

West Pier Business Campus Dun Laoghaire Co Dublin Ireland

Attention: Matthew King

Date: 2nd March, 2022

Your reference : IE000335

Our reference : Test Report 22/2826 Batch 1

Location : Monettia Bog

Date samples received: 21st February, 2022

Status: Final Report

Issue:

Six samples were received for analysis on 21st February, 2022 of which six were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Bruce Leslie

Project Manager

Please include all sections of this report if it is reproduced

Client Name: RPS

Reference: IE000335
Location: Monettia Bog
Contact: Matthew King
EMT Job No: 22/2826

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

EMT Job No:	22/2826						H=H ₂ SO ₄ , 2	Z=ZnAc, N=	NaOH, HN=	:HN0 ₃	_		
EMT Sample No.	1-5	6-10	11-15	16-20	21-25	26-30							
Sample ID	MW102	MW105	MW106	MW107	MW108	SW101							
Depth													
COC No / misc												e attached nations and a	
Containers	V HN P G	V HN P G	V HN P G	V HN P G	V HN P G	V HN P G							
Sample Date			17/02/2022 11:50	17/02/2022 12:30	17/02/2022 13:00	17/02/2022 13:30							
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Surface Water							
Batch Number	1	1	1	1	1	1					LOD/LOR	Units	Method
Date of Receipt	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022							No.
Dissolved Arsenic#	<250.0 _{AC}	6.3	<2.5	<2.5	<2.5	<2.5					<2.5	ug/l	TM30/PM14
Dissolved Barium #	2123 _{AC}	266	163	145	137	96					<3	ug/l	TM30/PM14
Dissolved Beryllium	<50.0 _{AC}	<0.5	<0.5	<0.5	<0.5	<0.5					<0.5	ug/l	TM30/PM14
Dissolved Boron	<1200 _{AC}	14	12	16	30	18					<12	ug/l	TM30/PM14
Dissolved Cadmium #	<50.0 _{AC}	<0.5	<0.5	<0.5	<0.5	<0.5					<0.5	ug/l	TM30/PM14
Total Dissolved Chromium *	<150.0 _{AC}	<1.5	<1.5	2.7	<1.5	<1.5					<1.5	ug/l	TM30/PM14 TM30/PM14
Dissolved Copper # Dissolved Lead #	<700 _{AC}	<7 <5	23 <5	<7 <5	<7 <5	<7 <5					<7 <5	ug/l ug/l	TM30/PM14
Dissolved Lead Dissolved Mercury#	<100 _{AC}	<1	<1	<1	<1	<1					<1	ug/l	TM30/PM14
Dissolved Nickel #	<200 _{AC}	<2	42	<2	<2	<2					<2	ug/l	TM30/PM14
Dissolved Selenium#	<300 _{AC}	<3	<3	<3	<3	<3					<3	ug/l	TM30/PM14
Dissolved Vanadium#	<150.0 _{AC}	<1.5	3.0	<1.5	<1.5	<1.5					<1.5	ug/l	TM30/PM14
Dissolved Zinc#	<300 _{AC}	8	21	10	8	<3					<3	ug/l	TM30/PM14
PAH MS													
Naphthalene #	NDP	269.4 _{AD}	983.0 _{AD}	0.3	2.3	<0.1					<0.1	ug/l	TM4/PM30
Acenaphthylene #	NDP	42.080 _{AD}	136.448 _{AD}	0.060	0.217	<0.005					<0.005	ug/l	TM4/PM30
Acenaphthene #	NDP	47.943 _{AD}	155.754 _{AD}	0.072	0.297	<0.005					<0.005	ug/l	TM4/PM30
Fluorene #	NDP	104.899 _{AD}	304.454 _{AD}	0.149	0.494	<0.005					<0.005	ug/l	TM4/PM30
Phenanthrene #	NDP	254.829 _{AD}	768.577 _{AD}	0.280	0.769	<0.005					<0.005	ug/l	TM4/PM30
Anthracene #	NDP	3.314 _{AD}	5.545 _{AD}	0.011	0.028	<0.005					<0.005	ug/l	TM4/PM30
Fluoranthene # Pyrene #	NDP NDP	12.828 _{AD} 63.322 _{AD}	<1.000 _{AD}	0.007	0.028	<0.005 <0.005					<0.005 <0.005	ug/l ug/l	TM4/PM30 TM4/PM30
Benzo(a)anthracene #	NDP	<1.000 _{AD}	<1.000 _{AD}	<0.005	<0.005	<0.005					<0.005	ug/l	TM4/PM30
Chrysene #	NDP	4.484 _{AD}	14.596 _{AD}	<0.005	<0.005	<0.005					<0.005	ug/l	TM4/PM30
Benzo(bk)fluoranthene#	NDP	<1.600 _{AD}	1.752 _{AD}	<0.008	<0.008	<0.008					<0.008	ug/l	TM4/PM30
Benzo(a)pyrene #	NDP	1.041 _{AD}	1.209 _{AD}	<0.005	<0.005	<0.005					<0.005	ug/l	TM4/PM30
Indeno(123cd)pyrene #	NDP	<1.000 _{AD}	<1.000 _{AD}	<0.005	<0.005	<0.005					<0.005	ug/l	TM4/PM30
Dibenzo(ah)anthracene #	NDP	<1.000 _{AD}	<1.000 _{AD}	<0.005	<0.005	<0.005					<0.005	ug/l	TM4/PM30
Benzo(ghi)perylene #	NDP	<1.000 _{AD}	<1.000 _{AD}	<0.005	<0.005	<0.005					<0.005	ug/l	TM4/PM30
PAH 16 Total#	NDP	804.140 _{AD}	2561.190 _{AD}	0.940	4.234	<0.173					<0.173	ug/l	TM4/PM30
Benzo(b)fluoranthene	NDP	<1.600 _{AD}	<1.600 _{AD}	<0.008	<0.008	<0.008					<0.008	ug/l	TM4/PM30
Benzo(k)fluoranthene	NDP	<1.600 _{AD}	<1.600 _{AD}	<0.008	<0.008	<0.008					<0.008	ug/l	TM4/PM30
PAH Surrogate % Recovery	NDP	118 _{AD}	81 _{AD}	43	78	85					<0	%	TM4/PM30
VOC TICs	See Attached	See Attached	See Attached	ND	ND	ND						None	TM15/PM10
SVOC TICs	NDP	See Attached	See Attached	ND	ND	ND						None	TM16/PM30
GRO (>C4-C8) #	20498	364	1159	<10	<10	<10					<10	ug/l	TM36/PM12
GRO (>C8-C12)#	65275	5114	13293	113	720	<10					<10	ug/l	TM36/PM12
GRO (>C4-C12)#	85773	5478	14452	113	720	<10					<10	ug/l	TM36/PM12
EPH (C8-C40)#	NDP	1431920 ^{SV}	5323300 _{AA}	1450	2400	<10					<10	ug/l	TM5/PM30

RPS Client Name: Report: Liquid

IE000335 Reference: Location: Monettia Bog Matthew King Contact:

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

	Matthew R 22/2826	Mily					H=H ₂ SO ₄ , 2		≔glass bottle :HN0₃	e, r=piastic	Dottie	
EMT Sample No.	1-5	6-10	11-15	16-20	21-25	26-30						
Sample ID	MW102	MW105	MW106	MW107	MW108	SW101						
Depth										Please se	e attached n	otes for all
COC No / misc											ations and a	
Containers	V HN P G	V HN P G	V HN P G	V HN P G	V HN P G	V HN P G						
Sample Date	17/02/2022 09:30	17/02/2022 11:00	17/02/2022 11:50	17/02/2022 12:30	17/02/2022 13:00	17/02/2022 13:30						
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Surface Water						
Batch Number	1	1	1	1	1	1				LOD/LOR	Units	Method
Date of Receipt	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022				LOD/LOR	Office	No.
Hexavalent Chromium	NDP	NDP	NDP	NDP	NDP	NDP				<6	ug/l	TM38/PM0
Total Dissolved Chromium III	NDP	NDP	NDP	NDP	NDP	NDP				<6	ug/l	TM0/PM0
COD (Settled) #	-	-	-	-	-	40				<7	mg/l	TM57/PM0
Electrical Conductivity @25C#	<2	773	939	875	926	304				<2	uS/cm	TM76/PM0
pH#	7.60	7.45	7.19	7.37	7.30	7.95				<0.01	pH units	TM73/PM0
Total Suspended Solids * Turbidity	-	-	-	-	-	<10 5.8				<10 <0.1	mg/l NTU	TM37/PM0 TM34/PM0
												

Client Name: RPS SVOC Report : Liquid

Reference: IE000335
Location: Monettia Bog
Contact: Matthew King
EMT Job No: 22/2826

EMT Job No:	22/2826										
EMT Sample No.	1-5	6-10	11-15	16-20	21-25	26-30]		
Sample ID	MW102	MW105	MW106	MW107	MW108	SW101					
Depth									Please so	e attached r	notes for all
COC No / misc										e attached rations and a	
Containers	VHNPG	VHNPG	V HN P G	V HN P G	V HN P G	V HN P G			Ì		
Sample Date	17/02/2022 09:30	17/02/2022 11:00	17/02/2022 11:50		17/02/2022 13:00	17/02/2022 13:30					
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Surface Water					
Batch Number	1	1	1	1	1	1			LOD/LOR	Units	Method
Date of Receipt	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022					No.
SVOC MS Phenols											
2-Chlorophenol #	NDP	<50 _{AB}	<2000 _{AE}	<1	<1	<1			<1	ug/l	TM16/PM30
2-Chlorophenol #	NDP	<50AB	<1000.0 _{AE}	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
2-Nitrophenol	NDP	<25.0 _{AB}	<1000.0AE	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
2,4-Dichlorophenol#	NDP	<25.0 _{AB}	<1000.0 _{AE}	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
2,4-Dimethylphenol	NDP	<50 _{AB}	<2000 _{AE}	<1	<1	<1			<1	ug/l	TM16/PM30
2,4,5-Trichlorophenol #	NDP	<25.0 _{AB}	<1000.0 _{AE}	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
2,4,6-Trichlorophenol	NDP	<50 _{AB}	<2000 _{AE}	<1	<1	<1			<1	ug/l	TM16/PM30
4-Chloro-3-methylphenol #	NDP	<25.0 _{AB}	<1000.0 _{AE}	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
4-Methylphenol	NDP	<50 _{AB}	<2000 _{AE}	<1	<1	<1			<1	ug/l	TM16/PM30
4-Nitrophenol	NDP	<500 _{AB}	<20000 _{AE}	<10	<10	<10			<10	ug/l	TM16/PM30
Pentachlorophenol	NDP	<50 _{AB}	<2000 _{AE}	<1	<1	<1			<1	ug/l	TM16/PM30
Phenol PAHs	NDP	<50 _{AB}	<2000 _{AE}	<1	<1	<1			<1	ug/l	TM16/PM30
2-Chloronaphthalene #	NDP	<50 _{AB}	<2000 _{AE}	<1	<1	<1			<1	ug/l	TM16/PM30
2-Methylnaphthalene # Phthalates	NDP	1832 _{AB}	8618 _{AE}	3	8	<1			<1	ug/l	TM16/PM30
Bis(2-ethylhexyl) phthalate	NDP	<250 _{AB}	<10000 _{AE}	<5	<5	<5			<5	ug/l	TM16/PM30
Butylbenzyl phthalate	NDP	<50 _{AB}	<2000 _{AE}	<1	<1	<1			<1	ug/l	TM16/PM30
Di-n-butyl phthalate #	NDP	<75.0 _{AB}	<3000.0 _{AE}	<1.5	<1.5	<1.5			<1.5	ug/l	TM16/PM30
Di-n-Octyl phthalate	NDP	<50 _{AB}	<2000 _{AE}	<1	<1	<1			<1	ug/l	TM16/PM30
Diethyl phthalate #	NDP	<50 _{AB}	<2000 _{AE}	<1	<1	<1			<1	ug/l	TM16/PM30
Other SVOCs 1,2-Dichlorobenzene #	NDP NDP	<50 _{AB}	<2000 _{AE}	<1	<1	<1			<1	ug/l ug/l	TM16/PM30 TM16/PM30
1,2,4-Trichlorobenzene #	NDP	<50 _{AB}	<2000AE	<1	<1	<1			<1	ug/l	TM16/PM30
1,3-Dichlorobenzene #	NDP	<50 _{AB}	<2000AE	<1	<1	<1			<1	ug/l	TM16/PM30
1,4-Dichlorobenzene #	NDP	<50 _{AB}	<2000 _{AE}	<1	<1	<1			<1	ug/l	TM16/PM30
2-Nitroaniline	NDP	<50 _{AB}	<2000 _{AE}	<1	<1	<1			<1	ug/l	TM16/PM30
2,4-Dinitrotoluene #	NDP	<25.0 _{AB}	<1000.0 _{AE}	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
2,6-Dinitrotoluene	NDP	<50 _{AB}	<2000 _{AE}	<1	<1	<1			<1	ug/l	TM16/PM30
3-Nitroaniline	NDP	<50 _{AB}	<2000 _{AE}	<1	<1	<1			<1	ug/l	TM16/PM30
4-Bromophenylphenylether #	NDP	<50 _{AB}	<2000 _{AE}	<1	<1	<1			<1	ug/l	TM16/PM30
4-Chloroaniline	NDP	<50 _{AB}	<2000 _{AE}	<1	<1	<1			<1	ug/l	TM16/PM30
4-Chlorophenylphenylether #	NDP NDP	<50 _{AB}	<2000 _{AE}	<1	<1	<1			<1	ug/l	TM16/PM30 TM16/PM30
4-Nitroaniline Azobenzene#	NDP	<25.0 _{AB}	<1000.0 _{AE}	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5			<0.5 <0.5	ug/l ug/l	TM16/PM30
Bis(2-chloroethoxy)methane #	NDP	<25.0 _{AB}	<1000.0 _{AE}	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
Bis(2-chloroethyl)ether#	NDP	<50 _{AB}	<2000AE	<1	<1	<1			<1	ug/l	TM16/PM30
Carbazole #	NDP	<25.0 _{AB}	<1000.0 _{AE}	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
Dibenzofuran #	NDP	51.9 _{AB}	<1000.0 _{AE}	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
Hexachlorobenzene #	NDP	<50 _{AB}	<2000 _{AE}	<1	<1	<1			<1	ug/l	TM16/PM30
Hexachlorobutadiene #	NDP	<50 _{AB}	<2000 _{AE}	<1	<1	<1			<1	ug/l	TM16/PM30
Hexachlorocyclopentadiene	NDP	<50 _{AB}	<2000 _{AE}	<1	<1	<1			<1	ug/l	TM16/PM30
Hexachloroethane #	NDP	<50 _{AB}	<2000 _{AE}	<1	<1	<1			<1	ug/l	TM16/PM30
Isophorone #	NDP	<25.0 _{AB}	<1000.0 _{AE}	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
N-nitrosodi-n-propylamine *	NDP	<25.0 _{AB}	<1000.0 _{AE}	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
Nitrobenzene # Surrogate Recovery 2-Fluorobiphenyl	NDP NDP	<50 _{AB}	<2000 _{AE}	<1 102	<1 109	<1 107			<1 <0	ug/l %	TM16/PM30 TM16/PM30
Surrogate Recovery 2-Fluorobiphenyl-d14		116 _{AB}	133 AE 141 AE	116	120	113			<0	%	TM16/PM30
gan marrial prosphenyl u14	1401	120AB	I+I AE	110	120	110			~0	70	
			l	l	l	l		l			

Client Name: RPS VOC Report : Liquid

Reference: IE000335
Location: Monettia Bog
Contact: Matthew King
EMT Job No: 22/2826

Date of Receipt 10/20022 2 10/20022	EMT Job No:	22/2826										
Passes Despit COChe Franke Continue Continue Sample Data Country Count	EMT Sample No.	1-5	6-10	11-15	16-20	21-25	26-30					
COCO No Intentice	Sample ID	MW102	MW105	MW106	MW107	MW108	SW101					
Control												
Contineer Sample Type Sa	·											
Semple Number		VHNPG	VHNPG	VHNPG	VHNPG	VHNPG	VHNPG			455,011	4.101.10 di 10 d	o. o y
Sample Type							-					
Debe of Receipt	•	Ground Water	Surface Water									
Debte of Receipt 20022002 20022002 20022002 20022002	Batch Number	1	1	1	1	1	1			LOD/LOD	Unite	Method
Debrodochromenheine		21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022			LOD/LOR	Offics	No.
Month Tempo Bayet then *												
Chorentman 4												TM15/PM10
Viny Chemics 6.0.1												TM15/PM10 TM15/PM10
Remomethane												TM15/PM10
Technologomentame	,											TM15/PM10
15-Delicontentment (1) CDE	Chloroethane #	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Debtomorehane (DOM)	Trichlorofluoromethane #	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
mans-12-Dichisometheme											-	TM15/PM10
13-Delatorometheme* 3	` ` .											TM15/PM10
sea-12-Dehitocoppene												TM15/PM10
22-Dichiorpropage											-	TM15/PM10 TM15/PM10
Beneration/contentaine*												TM15/PM10
Chlorotom*												TM15/PM10
1.1-Dehitoporpopee	Chloroform#											TM15/PM10
Carbon vetrachioride* 22	1,1,1-Trichloroethane #	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
1.2-Dichoposhane											-	TM15/PM10
Benzene*												TM15/PM10
Trichtoroptopene (**CE)** 4.2											-	TM15/PM10 TM15/PM10
1.2-Dichloropropane											-	TM15/PM10
Decomeratione												TM15/PM10
Cast-13-Dichtorpropene											-	TM15/PM10
Toluene 8 881	Bromodichloromethane #	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
rans-1-3-Dichloropropene	cis-1-3-Dichloropropene	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
1,1,2-Trichloroethane* <2												TM15/PM10
Tetrachloroethene (PCE)* 43												TM15/PM10
1.3-Dichloropropane											-	TM15/PM10 TM15/PM10
Dibromochloromethane	` '										-	TM15/PM10
1.2-Dibromoethane												TM15/PM10
1,1,1,2-Tetrachloroethane* <2		<2	<2	<2	<2		<2			<2		TM15/PM10
Ethylbenzene	Chlorobenzene #	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
m/p-Xylene #					<2	<2	<2			<2	ug/l	TM15/PM10
o-Xylene " >>1201 383 547 <1 9 <1 <1 ug/l TM Syrene <2												TM15/PM10
Styrene <2 <2 <2 <2 <2 <2 <2 <2 ug/l TM Bromoform* <2												TM15/PM10
Bromoform											-	TM15/PM10 TM15/PM10
Sopropylbenzene												TM15/PM10
1,1,2,2-Tetrachloroethane <4												TM15/PM10
1,2,3-Trichloropropane												TM15/PM10
Propylbenzene	Bromobenzene #	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
2-Chlorotoluene											-	TM15/PM10
1,3,5-Trimethylbenzene " >>1714 196 394 <3												TM15/PM10
4-Chlorotoluene												TM15/PM10
tert-Butylbenzene # <3 <3 <3 <3 <3 <3 <3 <3 Ug/l TM 1,2,4-Trimethylbenzene # >>6336 836 >>1632 <3	* *										-	TM15/PM10 TM15/PM10
1,2,4-Trimethylbenzene # >>6336 836 >>1632 <3												TM15/PM10
sec-Butylbenzene # 237 25 52 <3	•										-	TM15/PM10
4-Isopropyltoluene												TM15/PM10
1,4-Dichlorobenzene * <3		159	18	38	<3	<3	<3			<3	ug/l	TM15/PM10
n-Butylbenzene # 349 37 95 <3												TM15/PM10
1,2-Dichlorobenzene * <3												TM15/PM10
1,2-Dibromo-3-chloropropane <2												TM15/PM10
1,2,4-Trichlorobenzene <3	•											TM15/PM10 TM15/PM10
Hexachlorobutadiene <3												TM15/PM10
1,2,3-Trichlorobenzene <3												TM15/PM10
Surrogate Recovery Toluene D8 91 103 104 106 106 113 < 0 7M												TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene 71 102 94 105 106 110 <0 % TM											-	TM15/PM10
	Surrogate Recovery 4-Bromofluorobenzene	71	102	94	105	106	110			<0	%	TM15/PM10

Job number:22/2826Method:VOCSample number:1Matrix:Liquid

Sample identity: MW102

Sample depth:

Sample Type: Ground Water

Units: ug/l

CAS No.	Tentative Compound Identification	Retention Time (minutes)	% Match	Concentration
108-87-2	Cyclohexane, methyl-	4.675	91	759
1678-91-7	Cyclohexane, ethyl-	5.661	95	568
15869-93-9	Octane, 3,5-dimethyl-	6.465	81	412
611-14-3	Benzene, 1-ethyl-2-methyl-	6.697 - 6.850	87,94	2517
1758-88-9	Benzene, 2-ethyl-1,4-dimethyl-	7.430	95	589
874-41-9	Benzene, 1-ethyl-2,4-dimethyl-	7.482	95	433
767-58-8	Indan, 1-methyl-	7.561	94	464
2958-76-1	Naphthalene, decahydro-2-methyl-	7.650	95	534
112-40-3	Dodecane	7.870	90	525
824-90-8	1-Phenyl-1-butene	7.954	93	865
56253-64-6	Benzene, (2-methyl-1-butenyl)-	8.193	89	423

Job number:22/2826Method:VOCSample number:6Matrix:Liquid

Sample identity: MW105

Sample depth:

Sample Type: Ground Water

Units: ug/l

CAS No.	Tentative Compound Identification	Retention Time (minutes)	% Match	Concentration
611-14-3	Benzene, 1-ethyl-2-methyl-	6.697 - 6.850	94,94	1115
99-87-6	p-Cymene	7.061	90	280
527-84-4	o-Cymene	7.430 - 7.482	95,95	544
767-58-8	Indan, 1-methyl-	7.561	94	253
2958-76-1	Naphthalene, decahydro-2-methyl-	7.650	94	313
95-93-2	Benzene, 1,2,4,5-tetramethyl-	7.688 - 7.722	95,95	334
112-40-3	Dodecane	7.870	90	384
824-90-8	1-Phenyl-1-butene	7.954	91	634
119-64-2	Naphthalene, 1,2,3,4-tetrahydro-	8.050	97	242
6682-71-9	1H-Indene, 2,3-dihydro-4,7-dimethyl-	8.090 - 8.145	93,95	238
16608-68-7	2-Butene, 3-chloro-1-phenyl-, (Z)-	8.199	92	352

Job number:22/2826Method:VOCSample number:11Matrix:Liquid

Sample identity: MW106

Sample depth:

Sample Type: Ground Water

Units: ug/l

CAS No.	Tentative Compound Identification	Retention Time (minutes)	% Match	Concentration
611-14-3	Benzene, 1-ethyl-2-methyl-	6.695 - 6.848	94,94	1806
527-84-4	o-Cymene	7.059 - 7.483	91,95	805
1758-88-9	Benzene, 2-ethyl-1,4-dimethyl-	7.430	95	485
767-58-8	Indan, 1-methyl-	7.561	94	379
2958-76-1	Naphthalene, decahydro-2-methyl-	7.651	95	505
527-53-7	Benzene, 1,2,3,5-tetramethyl-	7.718	95	311
112-40-3	Dodecane	7.870	92	675
874-35-1	1H-Indene, 2,3-dihydro-5-methyl-	7.954	90	1085
119-64-2	Naphthalene, 1,2,3,4-tetrahydro-	8.050	97	384
53172-84-2	Benzene, (1-methyl-1-butenyl)-	8.091 - 8.118	90,93	471
16608-68-7	2-Butene, 3-chloro-1-phenyl-, (Z)-	8.193	92	636

Job number:22/2826Method:SVOCSample number:10Matrix:Liquid

Sample identity: MW105

Sample depth:

Sample Type: Ground Water

Units: ug/l

CAS No.	Tentative Compound Identification	Retention Time (minutes)	% Match	Concentration
2809-64-5	Naphthalene, 1,2,3,4-tetrahydro-5-methyl-	7.434	97	103
544-76-3	Hexadecane	9.494	96	113
629-78-7	Heptadecane	9.995 - 12.620	95,96,97,98	362
629-92-5	Nonadecane	10.917	97	121
112-95-8	Eicosane	11.340	96	101

Job number:22/2826Method:SVOCSample number:15Matrix:Liquid

Sample identity: MW106

Sample depth:

Sample Type: Ground Water

Units: ug/l

CAS No.	Tentative Compound Identification	Retention Time (minutes)	% Match	Concentration
526-73-8	Benzene, 1,2,3-trimethyl-	5.073	95	1999
112-40-3	Dodecane	7.040	96	1454
2809-64-5	Naphthalene, 1,2,3,4-tetrahydro-5-methyl-	7.441	97	2729
629-50-5	Tridecane	7.750	95	1556
13065-07-1	Naphthalene, 1,2,3,4-tetrahydro-2,7-dimethyl-	7.819	93	1950
629-59-4	Tetradecane	8.387	97	1927
629-62-9	Pentadecane	8.966	95	2821
544-76-3	Hexadecane	9.501	97	2462
629-78-7	Heptadecane	9.995	98	3084
55045-11-9	Tridecane, 5-propyl-	10.048	93	2139
593-45-3	Octadecane	10.470	93	2348
638-36-8	Hexadecane, 2,6,10,14-tetramethyl-	10.539	96	1821
629-92-5	Nonadecane	10.917	97	2989
112-95-8	Eicosane	11.347 - 11.763	98,98	3775

NDP Reason Report

Client Name: RPS Matrix : Liquid

Reference: IE000335
Location: Monettia Bog
Contact: Matthew King

EN4E				ENT		
EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Method No.	NDP Reason
22/2826	1	MW102		1-5	TM4/PM30	Solvent dissolves - no layer visible to extract
22/2826	1	MW102		1-5	TM16/PM30	Solvent dissolves - no layer visible to extract
22/2826	1	MW102		1-5	TM5/PM30	Solvent dissolves - no layer visible to extract
22/2826	1	MW102		1-5	TM38/PM0	Sample unsuitable for this test
22/2826	1	MW102		1-5	TM0/PM0	Sample unsuitable for this test
22/2826	1	MW105		6-10	TM38/PM0	Sample unsuitable for this test
22/2826	1	MW105		6-10	TM0/PM0	Sample unsuitable for this test
22/2826	1	MW106		11-15	TM38/PM0	Sample unsuitable for this test
22/2826	1	MW106		11-15	TM0/PM0	Sample unsuitable for this test
22/2826	1	MW107		16-20	TM38/PM0	Sample unsuitable for this test
22/2826	1	MW107		16-20	TM0/PM0	Sample unsuitable for this test
22/2826	1	MW108		21-25	TM38/PM0	Sample unsuitable for this test
22/2826	1	MW108		21-25	TM0/PM0	Sample unsuitable for this test
22/2826	1	SW101		26-30	TM38/PM0	Sample unsuitable for this test
22/2826	1	SW101		26-30	TM0/PM0	Sample unsuitable for this test

Client Name: RPS

Reference: IE000335
Location: Monettia Bog
Contact: Matthew King

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
					No deviating sample report results for job 22/2826	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 22/2826

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C. Ash samples are dried at 37°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

EMT Job No.: 22/2826

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation. Laboratory records are kept for a period of no less than 6 years.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

Customer Provided Information

Sample ID and depth is information provided by the customer.

ABBREVIATIONS and ACRONYMS USED

## ISO17025 (UNAS Ref No. 1425) accredited - UK. SA ISO17025 (SANAS Ref No. 10729) accredited - South Africa		
B Indicates analyte found in associated method blank. DR Dilution required. M MCERTS accredited. NA Not applicable NAD No Asbestos Detected. ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page, Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher. Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LODI/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NED No Fibres Detected BS ACC Sample LB Blank Sample C Client Sample TB Trip Blank Sample OC Outside Calibration Range AA x7 Dilution AC x100 Dilution AC x100 Dilution	#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
DR Dilution required. M MCERTS accredited. NA Not applicable NAD No Asbestos Detected. ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + ACC failure, accreditation has been removed from this result, if appropriate, see "Note" on previous page. > Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher. ' Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C 45°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effact NFD No Fibres Detected BS ACC Sample LB Blank Sample TB Trip Blank Sample OC Outside Calibration Range AA x7 Dilution AB x50 Dilution AC x100 Dilution AC x100 Dilution	SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
M MCERTS accredited. NA Not applicable NAD No Asbestos Detected. ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + ACC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. >> Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher. * Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS ACC Sample LB Blank Sample N Client Sample TB Trip Blank Sample OC Outside Calibration Range AA x7 Dilution AB x50 Dilution AC x100 Dilution	В	Indicates analyte found in associated method blank.
NAD No Asbestos Detected. NDD No Asbestos Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see "Note" on previous page. Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher. * Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C a5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AGC Sample LB Blank Sample TB Trip Blank Sample OC Outside Calibration Range AA X7 Dilution AB x50 Dilution AC x100 Dilution	DR	Dilution required.
NAD No Asbestos Detected. ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AOC failure, accreditation has been removed from this result, if appropriate, see "Note" on previous page. Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher. - Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LODILOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AOC Sample LB Blank Sample TB Trip Blank Sample TB Trip Blank Sample OC Outside Calibration Range AA x7 Dilution AB x50 Dilution AC x100 Dilution	М	MCERTS accredited.
ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher. - Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LODILOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample OC Outside Calibration Range AA x7 Dilution AB x50 Dilution AC x100 Dilution	NA	Not applicable
NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher. + Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C 25°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample Tip Blank Sample OC Outside Calibration Range AA X7 Dilution AB x50 Dilution AC x100 Dilution	NAD	No Asbestos Detected.
SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher. * Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample LB Blank Sample Trip Blank Sample OC Outside Calibration Range AA x7 Dilution AB x50 Dilution AC x100 Dilution	ND	None Detected (usually refers to VOC and/SVOC TICs).
SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. >> Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher. * Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS ACC Sample LB Blank Sample N Client Sample TB Trip Blank Sample OC Outside Calibration Range AA x7 Dilution AB x50 Dilution AC x100 Dilution	NDP	No Determination Possible
W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see "Note" on previous page. >> Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher. * Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample Tip Blank Sample OC Outside Calibration Range AA x7 Dilution AB x50 Dilution AC x100 Dilution	SS	Calibrated against a single substance
+ AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher. Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample Trip Blank Sample OC Outside Calibration Range AA x7 Dilution AB x50 Dilution AC x100 Dilution	SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher. Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample OC Outside Calibration Range AA x7 Dilution AB x50 Dilution AC x100 Dilution	W	Results expressed on as received basis.
higher. Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample OC Outside Calibration Range AA x7 Dilution AB x50 Dilution AC x100 Dilution	+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample OC Outside Calibration Range AA x7 Dilution AB x50 Dilution AC x100 Dilution	>>	
CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample OC Outside Calibration Range AA x7 Dilution AB x50 Dilution AC x100 Dilution	*	Analysis subcontracted to an Element Materials Technology approved laboratory.
LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample Trip Blank Sample OC Outside Calibration Range AA x7 Dilution AB x50 Dilution AC x100 Dilution	AD	Samples are dried at 35°C ±5°C
ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample OC Outside Calibration Range AA x7 Dilution AB x50 Dilution AC x100 Dilution	СО	Suspected carry over
NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample OC Outside Calibration Range AA x7 Dilution AB x50 Dilution AD x200 Dilution	LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample OC Outside Calibration Range AA x7 Dilution AB x50 Dilution AC x100 Dilution AD x200 Dilution	ME	Matrix Effect
LB Blank Sample N Client Sample TB Trip Blank Sample OC Outside Calibration Range AA x7 Dilution AB x50 Dilution AC x100 Dilution AD x200 Dilution	NFD	No Fibres Detected
N Client Sample TB Trip Blank Sample OC Outside Calibration Range AA x7 Dilution AB x50 Dilution AC x100 Dilution AD x200 Dilution	BS	AQC Sample
TB Trip Blank Sample OC Outside Calibration Range AA x7 Dilution AB x50 Dilution AC x100 Dilution AD x200 Dilution	LB	Blank Sample
OC Outside Calibration Range AA x7 Dilution AB x50 Dilution AC x100 Dilution AD x200 Dilution	N	Client Sample
AA x7 Dilution AB x50 Dilution AC x100 Dilution AD x200 Dilution	ТВ	Trip Blank Sample
AB x50 Dilution AC x100 Dilution AD x200 Dilution	ОС	Outside Calibration Range
AC x100 Dilution AD x200 Dilution	AA	x7 Dilution
AD x200 Dilution	AB	x50 Dilution
	AC	x100 Dilution
AE x2000 Dilution	AD	x200 Dilution
	AE	x2000 Dilution

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

EMT Job No: 22/2826

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
ТМО	Not available	PM0	No preparation is required.				
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM15	Modified USEPA 8260B v2:1996. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.				
TM15	Modified USEPA 8260B v2:1996. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM16	Modified USEPA 8270D v5:2014. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM16	Modified USEPA 8270D v5:2014. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified				
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified	Yes			

EMT Job No: 22/2826

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM34	Turbidity by 2100P Turbidity Meter. complies with EPA 180.1 1993	PM0	No preparation is required.				
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM37	Solids (TSS) and Volatile Suspended Solids (VSS). Sample is filtered through a 1.5um pore size glass fibre filter and the resulting residue is dried and weighed at 105°C for TSS and Volatile Suspended Solids (TSS) and Volatile Suspended Solids (VSS). Sample is filtered through a 1.5um pore size glass fibre filter and the resulting residue is dried and weighed at 105°C for TSS and ESS® (1975).	PM0	No preparation is required.	Yes			
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013l	PM0	No preparation is required.				
TM57	Modified US EPA Method 410.4. (Rev. 2.0 1993) Comparable with ISO 15705:2002. Chemical Oxygen Demand is determined by hot digestion with Potassium Dichromate and measured spectrophotometerically.	PM0	No preparation is required.	Yes			
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM76	Modified US EPA method 120.1 (1982). Determination of Specific Conductance by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

Lyrr 2, IDA Business and Tech Park Galway Ireland H91 H9CK

Eoin Hurst Attention:

Date: 3rd May, 2022

Your reference : IE000335

Our reference : Test Report 22/6185 Batch 1

Monettia Bog Location:

Status: Final Report

1 Issue:

Date samples received :

Four samples were received for analysis on 14th April, 2022 of which four were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

14th April, 2022

Authorised By:

Phil Sommerton BSc Senior Project Manager

Please include all sections of this report if it is reproduced

22/6185

Client Name: RPS Report : Liquid

Reference: IE000335
Location: Monettia Bog
Contact: Eoin Hurst

EMT Job No:

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

EMI JOD NO:	22/0185						NaOH, HN=	Ü			
EMT Sample No.	1-5	6-10	11-15	16-20							
Sample ID	SW101	SW102	SW103	SW201							
Depth										e attached r	
COC No / misc									abbrevi	ations and a	cronyms
Containers	VHNPG	VHNPG	VHNPG	VHNPG							
Sample Date	13/04/2022 13:30	13/04/2022 12:30	13/04/2022 13:00	13/04/2022 12:00							
Sample Type	Surface Water	Surface Water	Surface Water	Surface Water							
Batch Number	1	1	1	1					LOD/LOR	Units	Method No.
Date of Receipt	14/04/2022	14/04/2022	14/04/2022	14/04/2022							140.
Dissolved Arsenic#	<2.5	<2.5	<2.5	<2.5					<2.5	ug/l	TM30/PM14
Dissolved Barium #	162	182	158	191					<3	ug/l	TM30/PM14
Dissolved Beryllium	<0.5	<0.5	<0.5	<0.5					<0.5	ug/l	TM30/PM14
Dissolved Boron	<12	15	<12	17					<12	ug/l	TM30/PM14
Dissolved Cadmium # Total Dissolved Chromium #	<0.5 <1.5	<0.5 <1.5	<0.5	<0.5 <1.5					<0.5 <1.5	ug/l	TM30/PM14 TM30/PM14
Dissolved Copper#	<7	<1.5	<1.5 <7	<1.5 <7					<7	ug/l ug/l	TM30/PM14
Dissolved Copper Dissolved Lead #	<5	<5	<5	<5					<5	ug/l	TM30/PM14
Dissolved Lead Dissolved Mercury#	<1	<1	<1	<1					<1	ug/l	TM30/PM14
Dissolved Nickel #	<2	<2	<2	<2					<2	ug/l	TM30/PM14
Dissolved Selenium#	<3	<3	<3	<3					<3	ug/l	TM30/PM14
Dissolved Vanadium #	<1.5	<1.5	<1.5	<1.5					<1.5	ug/l	TM30/PM14
Dissolved Zinc#	<3	<3	<3	<3					<3	ug/l	TM30/PM14
PAH MS											
Naphthalene [#]	<0.1	<0.1	<0.1	<0.1					<0.1	ug/l	TM4/PM30
Acenaphthylene #	<0.005	<0.005	<0.005	<0.005					<0.005	ug/l	TM4/PM30
Acenaphthene #	<0.005	<0.005	<0.005	<0.005					<0.005	ug/l	TM4/PM30
Fluorene #	<0.005	<0.005	<0.005	<0.005					<0.005	ug/l	TM4/PM30
Phenanthrene #	<0.005	<0.005	<0.005	<0.005					<0.005	ug/l	TM4/PM30
Anthracene #	<0.005	<0.005	<0.005	<0.005					<0.005	ug/l	TM4/PM30
Fluoranthene #	<0.005	<0.005	<0.005	<0.005					<0.005	ug/l	TM4/PM30
Pyrene#	<0.005	<0.005	<0.005	<0.005					<0.005	ug/l	TM4/PM30
Benzo(a)anthracene #	<0.005	<0.005	<0.005	<0.005					<0.005	ug/l	TM4/PM30
Chrysene #	<0.005	<0.005	<0.005	<0.005					<0.005	ug/l	TM4/PM30
Benzo(bk)fluoranthene#	<0.008	<0.008	<0.008	<0.008					<0.008	ug/l	TM4/PM30
Benzo(a)pyrene #	<0.005	<0.005 <0.005	<0.005	<0.005					<0.005	ug/l	TM4/PM30 TM4/PM30
Indeno(123cd)pyrene#	<0.005 <0.005	<0.005	<0.005 <0.005	<0.005 <0.005					<0.005 <0.005	ug/l	TM4/PM30
Dibenzo(ah)anthracene * Benzo(ghi)perylene *	<0.005	<0.005	<0.005	<0.005					<0.005	ug/l ug/l	TM4/PM30
PAH 16 Total #	<0.003	<0.003	<0.003	<0.003					<0.003	ug/l	TM4/PM30
Benzo(b)fluoranthene	<0.173	<0.173	<0.173	<0.173					<0.173	ug/l	TM4/PM30
Benzo(k)fluoranthene	<0.008	<0.008	<0.008	<0.008					<0.008	ug/l	TM4/PM30
PAH Surrogate % Recovery	77	83	76	80					<0	%	TM4/PM30
,											
VOC TICs	ND	ND	ND	ND						None	TM15/PM10
SVOC TICs	ND	ND	ND	ND						None	TM16/PM30
GRO (>C4-C8)#	<10	<10	<10	<10					<10	ug/l	TM36/PM12
GRO (>C8-C12)#	<10	<10	<10	<10					<10	ug/l	TM36/PM12
GRO (>C4-C12)#	<10	<10	<10	<10					<10	ug/l	TM36/PM12
, ,	-									. •	
EPH (C8-C40)#	<10	<10	<10	<10					<10	ug/l	TM5/PM30

22/6185

Client Name: RPS Report : Liquid

Reference: IE000335
Location: Monettia Bog
Contact: Eoin Hurst

EMT Job No:

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

Sample ID Depth COC No / misc Containers V F Sample Date Sample Type Batch Number Date of Receipt Hexavalent Chromium Total Dissolved Chromium III COD (Settled) # Electrical Conductivity @25C # pH #	1 1/04/2022 13:30 13/04/20 If ace Water Surface 1 1 1/04/2022 14/04 <6 < 6 < 26 3 531 7' 8.26 8.	PG V HN P (2 12:30 13/04/2022 13 Water Surface Wa 1 2022 14/04/202 6 <6 6 <6 <7	00 13/04/2022 12:00 ter Surface Water					e attached no ations and ac	cronyms
Depth COC No / misc Containers Sample Date Sample Type Batch Number Date of Receipt Hexavalent Chromium Total Dissolved Chromium III COD (Settled) # Electrical Conductivity @25C # pH #	THN P G V HN 04/2022 13:30 13/04/20 rface Water Surface 1 1 1 1/04/2022 14/04 <6 < 6 < 6 26 3 531 7' 8.26 8.	PG VHNP(221300 13/04/202213 13/04/202213 13/04/202213 14/04/2022 14/04/2023 6 <6 6 <6 <7	S V HN P G 13/04/2022 12:00 12/04/2022 12:00 13/04/2022 12:00 14/04/2022 14/04/2022				abbrevi	ations and ac	cronyms
COC No / misc Containers V I Sample Date 13/04/ Sample Type Batch Number Date of Receipt 14/0 Hexavalent Chromium Total Dissolved Chromium III COD (Settled) # Electrical Conductivity @25C # pH #	1 1/04/2022 13:30 13/04/20 If ace Water Surface 1 1 1/04/2022 14/04 <6 < 6 < 26 3 531 7' 8.26 8.	2 12:30 13/04/2022 13 Water Surface Wa	13/04/2022 12:00 der Surface Water 1 12 14/04/2022 <6				abbrevi	ations and ac	cronyms
COC No / misc Containers V I Sample Date 13/04/ Sample Type Batch Number Date of Receipt 14/0 Hexavalent Chromium Total Dissolved Chromium III COD (Settled) # Electrical Conductivity @25C # pH #	1 1/04/2022 13:30 13/04/20 If ace Water Surface 1 1 1/04/2022 14/04 <6 < 6 < 26 3 531 7' 8.26 8.	2 12:30 13/04/2022 13 Water Surface Wa	13/04/2022 12:00 der Surface Water 1 12 14/04/2022 <6				abbrevi	ations and ac	cronyms
Containers Sample Date Sample Type Batch Number Date of Receipt Hexavalent Chromium Total Dissolved Chromium III COD (Settled)# Electrical Conductivity @25C# pH#	1 1/04/2022 13:30 13/04/20 If ace Water Surface 1 1 1/04/2022 14/04 <6 < 6 < 26 3 531 7' 8.26 8.	2 12:30 13/04/2022 13 Water Surface Wa	13/04/2022 12:00 der Surface Water 1 12 14/04/2022 <6						
Sample Date Sample Type Batch Number Date of Receipt Hexavalent Chromium Total Dissolved Chromium III COD (Settled) # Electrical Conductivity @25C # pH #	1 1/04/2022 13:30 13/04/20 If ace Water Surface 1 1 1/04/2022 14/04 <6 < 6 < 26 3 531 7' 8.26 8.	2 12:30 13/04/2022 13 Water Surface Wa	13/04/2022 12:00 der Surface Water 1 12 14/04/2022 <6						
Sample Type Batch Number Date of Receipt 14/0 Hexavalent Chromium Total Dissolved Chromium III COD (Settled) # Electrical Conductivity @25C # pH #	1 Surface Water 1 1 14/04/2022 14/04 <6 < 6 < 6 < 6 531 7.8.26 8.	Water Surface Water 1 12022 14/04/202 6 <6 <6 <6 <7	1 14/04/2022 <6						
Batch Number Date of Receipt 14/0 Hexavalent Chromium Total Dissolved Chromium III COD (Settled)# Electrical Conductivity @25C# pH# 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2022 14/04/202 6 <6 6 <6	1 2 14/04/2022 <6						
Date of Receipt 14/0 Hexavalent Chromium Total Dissolved Chromium III COD (Settled)# Electrical Conductivity @25C# pH#	4/04/2022 14/04 <6 < <6 < 26 3 531 7' 8.26 8.	2022 14/04/202 6 <6 6 <6	2 14/04/2022				LOD/LOD		
Hexavalent Chromium Total Dissolved Chromium III COD (Settled)# Electrical Conductivity @25C# pH#	<6 <6 < 26 3 531 7 8.26 8.	6 <6 <6 <7	<6				LOD/LOR	Units	Method No.
Total Dissolved Chromium III COD (Settled)# Electrical Conductivity @25C# pH#	26 3 531 7' 8.26 8.	6 <6 4 <7					.0		
COD (Settled)# Electrical Conductivity @25C# pH#	26 3 531 7' 8.26 8.3	ļ <7					<6 <6	ug/l ug/l	TM38/PM0 TM0/PM0
Electrical Conductivity @25C# pH#	531 7° 8.26 8.3						Ü	ug,.	
pH#	8.26 8.	4 270	37				<7	mg/l	TM57/PM0
			703				<2	uS/cm	TM76/PM0
Total Suspended Solids *			8.20				<0.01	pH units	TM73/PM0
	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10		<10 3.8				<10 <0.1	mg/l NTU	TM37/PM0 TM34/PM0
Tarbidity	2.0	1.4	3.0				~0.1	NIO	1 IVIO+1 IT IVIO
	l	ı	l						

Client Name: RPS SVOC Report : Liquid

Reference: IE000335
Location: Monettia Bog
Contact: Eoin Hurst
EMT Job No: 22/6185

EMT Job No:	22/6185									
EMT Sample No.	1-5	6-10	11-15	16-20				Ì		
Sample ID	SW101	SW102	SW103	SW201						
Depth									e attached r ations and a	
COC No / misc	\/\!\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\/\IN\D.O	\/\IN\B0	\/\IN\B0				abblevia	alions and a	Cionyms
Containers	VHNPG	VHNPG	V HN P G 13/04/2022 13:00	V HN P G 13/04/2022 12:00						
Sample Date	13/04/2022 13:30	13/04/2022 12:30								
Sample Type			Surface Water							
Batch Number	1	1	1	1				LOD/LOR	Units	Method No.
Date of Receipt	14/04/2022	14/04/2022	14/04/2022	14/04/2022						INO.
SVOC MS Phenols										
	-4	-4	-11	-4				-1	/1	TM16/PM30
2-Chlorophenol#	<1	<1	<1	<1				<1	ug/l	TM16/PM30 TM16/PM30
2-Methylphenol #	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
2-Nitrophenol	<0.5 <0.5	<0.5	<0.5 <0.5	<0.5 <0.5				<0.5	ug/l	TM16/PM30
2,4-Dichlorophenol	<0.5	<0.5		<0.5				<0.5	ug/l	TM16/PM30
2,4-Dimethylphenol	<0.5	<1 <0.5	<1 <0.5	<0.5				<1 <0.5	ug/l	TM16/PM30
2,4,5-Trichlorophenol	<1	<1	<1	<1					ug/l	TM16/PM30
2,4,6-Trichlorophenol								<1	ug/l	TM16/PM30
4-Chloro-3-methylphenol # 4-Methylphenol	<0.5 <1	<0.5 <1	<0.5 <1	<0.5 <1				<0.5 <1	ug/l ug/l	TM16/PM30
4-Nitrophenol	<10	<10	<10	<10				<10	ug/l	TM16/PM30
Pentachlorophenol	<1	<10	<1	<1				<1	ug/l	TM16/PM30
Phenol	<1	<1	<1	<1				<1	ug/l	TM16/PM30
PAHs	`'	- 1	`'	`'				` '	ug/I	TIMETO/T IVISU
2-Chloronaphthalene	<1	<1	<1	<1				<1	ug/l	TM16/PM30
2-Methylnaphthalene #	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Phthalates									ug/I	70/1 10100
Bis(2-ethylhexyl) phthalate	<5	<5	<5	<5				<5	ug/l	TM16/PM30
Butylbenzyl phthalate	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Di-n-butyl phthalate#	<1.5	<1.5	<1.5	<1.5				<1.5	ug/l	TM16/PM30
Di-n-Octyl phthalate	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Diethyl phthalate #	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Dimethyl phthalate	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Other SVOCs									_	
1,2-Dichlorobenzene #	<1	<1	<1	<1				<1	ug/l	TM16/PM30
1,2,4-Trichlorobenzene #	<1	<1	<1	<1				<1	ug/l	TM16/PM30
1,3-Dichlorobenzene #	<1	<1	<1	<1				<1	ug/l	TM16/PM30
1,4-Dichlorobenzene #	<1	<1	<1	<1				<1	ug/l	TM16/PM30
2-Nitroaniline	<1	<1	<1	<1				<1	ug/l	TM16/PM30
2,4-Dinitrotoluene#	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
2,6-Dinitrotoluene	<1	<1	<1	<1				<1	ug/l	TM16/PM30
3-Nitroaniline	<1	<1	<1	<1				<1	ug/l	TM16/PM30
4-Bromophenylphenylether#	<1	<1	<1	<1				<1	ug/l	TM16/PM30
4-Chloroaniline	<1	<1	<1	<1				<1	ug/l	TM16/PM30
4-Chlorophenylphenylether#	<1	<1	<1	<1				<1	ug/l	TM16/PM30
4-Nitroaniline	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Azobenzene#	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Bis(2-chloroethoxy)methane#	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Bis(2-chloroethyl)ether#	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Carbazole#	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Dibenzofuran #	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Hexachlorobenzene#	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Hexachlorobutadiene #	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Hexachlorocyclopentadiene	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Hexachloroethane #	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Isophorone #	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
N-nitrosodi-n-propylamine #	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Nitrobenzene #	<1 sv	<1 sv	<1 sv	<1 sv				<1	ug/l	TM16/PM30
Surrogate Recovery 2-Fluorobiphenyl	139 ^{SV}	135 ^{sv}	139 SV	136 sv				<0	%	TM16/PM30
Surrogate Recovery p-Terphenyl-d14	140 sv	135 ^{sv}	140 sv	139 sv				<0	%	TM16/PM30

Client Name: RPS VOC Report :

Reference: IE000335
Location: Monettia Bog
Contact: Eoin Hurst
EMT Job No: 22/6185

OC Report : Liquid

EMT Sample No.	1-5	6-10	11-15	16-20							
Sample ID	SW101	SW102	SW103	SW201							
Depth										attached n	
COC No / misc									abbrevia	ations and a	cronyms
Containers Sample Date	V HN P G 13/04/2022 13:30	V HN P G 13/04/2022 12:30	V HN P G 13/04/2022 13:00	V HN P G 13/04/2022 12:00							
Sample Type				Surface Water							
Batch Number	1	1	1	1					LOD/LOR	Limite	Method
Date of Receipt	14/04/2022	14/04/2022	14/04/2022	14/04/2022					LUD/LUR	Units	No.
VOC MS											
Dichlorodifluoromethane	<2 <0.1	<2 <0.1	<2 <0.1	<2 <0.1					<2	ug/l	TM15/PM10
Methyl Tertiary Butyl Ether * Chloromethane *	<3	<3	<3	<3					<0.1 <3	ug/l ug/l	TM15/PM10 TM15/PM10
Vinyl Chloride #	<0.1	<0.1	<0.1	<0.1					<0.1	ug/l	TM15/PM10
Bromomethane	<1	<1	<1	<1					<1	ug/l	TM15/PM10
Chloroethane #	<3	<3	<3	<3					<3	ug/l	TM15/PM10
Trichlorofluoromethane #	<3	<3	<3	<3					<3	ug/l	TM15/PM10
1,1-Dichloroethene (1,1 DCE)#	<3	<3	<3	<3					<3	ug/l	TM15/PM10
Dichloromethane (DCM) # trans-1-2-Dichloroethene #	<3 <3	<3 <3	<3 <3	<3 <3					<3 <3	ug/l ug/l	TM15/PM10 TM15/PM10
1,1-Dichloroethane #	<3	<3	<3	<3					<3	ug/l	TM15/PM10
cis-1-2-Dichloroethene#	<3	<3	<3	<3					<3	ug/l	TM15/PM10
2,2-Dichloropropane	<1	<1	<1	<1					<1	ug/l	TM15/PM10
Bromochloromethane #	<2	<2	<2	<2					<2	ug/l	TM15/PM10
Chloroform#	<2 <2	<2 <2	<2 <2	<2 <2					<2 <2	ug/l	TM15/PM10 TM15/PM10
1,1,1-Trichloroethane # 1,1-Dichloropropene #	<2 <3	<2 <3	<2 <3	<2 <3					<2 <3	ug/l ug/l	TM15/PM10 TM15/PM10
Carbon tetrachloride #	<2	<2	<2	<2					<2	ug/l	TM15/PM10
1,2-Dichloroethane #	<2	<2	<2	<2					<2	ug/l	TM15/PM10
Benzene #	<0.5	<0.5	<0.5	<0.5					<0.5	ug/l	TM15/PM10
Trichloroethene (TCE)#	<3	<3	<3	<3					<3	ug/l	TM15/PM10
1,2-Dichloropropane #	<2 ⁺	<2+	<2 ⁺	<2 ⁺					<2	ug/l	TM15/PM10
Dibromomethane # Bromodichloromethane #	<3 <2	<3 <2	<3 <2	<3 <2					<3 <2	ug/l ug/l	TM15/PM10 TM15/PM10
cis-1-3-Dichloropropene	<2	<2	<2	<2					<2	ug/l	TM15/PM10
Toluene #	<5	<5	<5	<5					<5	ug/l	TM15/PM10
trans-1-3-Dichloropropene	<2	<2	<2	<2					<2	ug/l	TM15/PM10
1,1,2-Trichloroethane#	<2	<2	<2	<2					<2	ug/l	TM15/PM10
Tetrachloroethene (PCE)#	<3 <2	<3 <2	<3 <2	<3 <2					<3 <2	ug/l	TM15/PM10 TM15/PM10
1,3-Dichloropropane * Dibromochloromethane *	<2	<2	<2	<2					<2 <2	ug/l ug/l	TM15/PM10
1,2-Dibromoethane #	<2	<2	<2	<2					<2	ug/l	TM15/PM10
Chlorobenzene#	<2	<2	<2	<2					<2	ug/l	TM15/PM10
1,1,1,2-Tetrachloroethane #	<2	<2	<2	<2					<2	ug/l	TM15/PM10
Ethylbenzene #	<1	<1	<1	<1					<1	ug/l	TM15/PM10
m/p-Xylene [#] o-Xylene [#]	<2 <1	<2 <1	<2 <1	<2 <1					<2 <1	ug/l	TM15/PM10 TM15/PM10
Styrene	<2	<2	<2	<2					<2	ug/l ug/l	TM15/PM10
Bromoform#	<2	<2	<2	<2					<2	ug/l	TM15/PM10
Isopropylbenzene#	<3	<3	<3	<3					<3	ug/l	TM15/PM10
1,1,2,2-Tetrachloroethane	<4	<4	<4	<4					<4	ug/l	TM15/PM10
Bromobenzene#	<2	<2	<2	<2					<2	ug/l	TM15/PM10
1,2,3-Trichloropropane * Propylbenzene *	<3 <3	<3 <3	<3 <3	<3 <3					<3 <3	ug/l ug/l	TM15/PM10 TM15/PM10
2-Chlorotoluene #	<3	<3	<3	<3					<3	ug/l	TM15/PM10
1,3,5-Trimethylbenzene#	<3	<3	<3	<3					<3	ug/l	TM15/PM10
4-Chlorotoluene #	<3	<3	<3	<3					<3	ug/l	TM15/PM10
tert-Butylbenzene#	<3	<3	<3	<3					<3	ug/l	TM15/PM10
1,2,4-Trimethylbenzene#	<3	<3	<3	<3					<3	ug/l	TM15/PM10
sec-Butylbenzene [#] 4-Isopropyltoluene [#]	<3 <3	<3 <3	<3 <3	<3 <3					<3 <3	ug/l ug/l	TM15/PM10 TM15/PM10
1,3-Dichlorobenzene #	<3	<3	<3	<3					<3	ug/l	TM15/PM10
1,4-Dichlorobenzene #	<3	<3	<3	<3					<3	ug/l	TM15/PM10
n-Butylbenzene#	<3	<3	<3	<3					<3	ug/l	TM15/PM10
1,2-Dichlorobenzene #	<3	<3	<3	<3					<3	ug/l	TM15/PM10
1,2-Dibromo-3-chloropropane	<2 <3	<2	<2 <3	<2 <3					<2 <3	ug/l	TM15/PM10 TM15/PM10
1,2,4-Trichlorobenzene Hexachlorobutadiene	<3 <3	<3 <3	<3 <3	<3 <3					<3 <3	ug/l ug/l	TM15/PM10
Naphthalene	<2	<2	<2	<2					<2	ug/l	TM15/PM10
1,2,3-Trichlorobenzene	<3	<3	<3	<3					<3	ug/l	TM15/PM10
Surrogate Recovery Toluene D8	125	124	124	123					<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	111	109	109	108	l	l	l		<0	%	TM15/PM10

Client Name: RPS

Reference: IE000335
Location: Monettia Bog
Contact: Eoin Hurst

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
					No deviating sample report results for job 22/6185	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 22/6185

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C. Ash samples are dried at 37°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BI ANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

EMT Job No.: 22/6185

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

Laboratory records are kept for a period of no less than 6 years.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

Customer Provided Information

Sample ID and depth is information provided by the customer.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range

EMT Job No: 22/6185

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
тмо	Not available	PM0	No preparation is required.				
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM15	Modified USEPA 8260B v2:1996. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.				
TM15	Modified USEPA 8260B v2:1996. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM16	Modified USEPA 8270D v5:2014. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM16	Modified USEPA 8270D v5:2014. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified				
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EMA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified	Yes			

EMT Job No: 22/6185

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM34	Turbidity by 2100P Turbidity Meter. complies with EPA 180.1 1993	PM0	No preparation is required.				
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM37	Solids (TSS) and Volatile Suspended Solids (VSS). Sample is filtered through a 1.5um pore size glass fibre filter and the resulting residue is dried and weighed at 105°C for TSS and Volatile Suspended Solids (TSS) and Volatile Suspended Solids (VSS). Sample is filtered through a 1.5um pore size glass fibre filter and the resulting residue is dried and weighed at 105°C for TSS and ESSS (TSS).	PM0	No preparation is required.	Yes			
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013l	PM0	No preparation is required.				
TM57	Modified US EPA Method 410.4. (Rev. 2.0 1993) Comparable with ISO 15705:2002. Chemical Oxygen Demand is determined by hot digestion with Potassium Dichromate and measured spectrophotometerically.	PM0	No preparation is required.	Yes			
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM76	Modified US EPA method 120.1 (1982). Determination of Specific Conductance by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			

Complete Laboratory Solutions [Tel] 091 574355 [Fax] 091 574356 [Email] services@cls.ie [web] www.cls.ie

Client

CERTIFICATE OF ANALYSIS

Client : Stephen Stapleton, Compliance Officer

Bord na Móna (Derrinlough, Castletown, Blackwater

Blackwater Works, Blackwater, Shannonbridge, Athlone,

Co. Westmeath

505912 Report No. Date of Receipt 29/11/2022 Start Date of Analysis 30/11/2022 Date of Report 21/12/2022 Order Number Pending

Sample taken by

Sample Description	Test	Ref.	Result	Units
Monnettia drain	Suspended Solids	I,R	17	mg/l
29-11-22	Turbidity	I,R	3.3	N.T.U.
	рН	I,R	7.3	pH Units
	Conductivity @ 25 C	I,R	376	uS/cm
	SVOC TICs (GEO94)	S	See attached excel file	ug/l
	Chromium hexavalent in water	S	< 0.003	mg/l
	Chromium, total	I,R	<0.6	ug/l
	Copper, dissolved	I,R	<1	ug/l
	Lead, dissolved	I,R	<0.5	ug/l
		I,R	<0.5	ug/l
	Nickel, dissolved	I,R	2	ug/l
		I,R	<0.5	ug/l
		I,R	1	ug/l
		I,R	<0.05	ug/l
		I.R		ug/l
				ug/l
	VOC + TIC (HS, GEO76)	S	See attached excel file	ug/l
	Beryllium, dissolved	I,R	<0.5	ug/l
			<0.5	ug/l
	SVOCs (W) (GEO94)	S	See attached excel file	ug/l
	Chromium III	S	<0.03	mg/l
	Extractable Hydrocarbons Water (C8-C40, Diesel Range and Lube Oil) by GC-FID	I,R	58 **Unknown Pattern	ug/l
	COD(settled)	I,R	22	mg/l
	PAH 16 (non-DW)	S	<0.010	ug/l
	VOC suite - (non-DW)	S	See attached excel file	ug/l
	Description Monnettia drain	Monnettia drain 29-11-22 Suspended Solids Turbidity pH Conductivity @ 25 C SVOC TICs (GEO94) Chromium hexavalent in water Chromium, total Copper, dissolved Lead, dissolved Chromium, dissolved Nickel, dissolved Arsenic, dissolved Arsenic, dissolved Mercury, dissolved Selenium, dissolved Selenium, dissolved Barium, dissolved Barium, dissolved Beron, dissolved Boron, dissolved Boron, dissolved Boron, dissolved PRO Water (C5-C12) by GC-FID VOC + TIC (HS, GEO76) Beryllium, dissolved Vanadium, dissolved SVOCs (W) (GEO94) Chromium III Extractable Hydrocarbons Water (C8-C40, Diesel Range and Lube Oil) by GC-FID COD(settled) PAH 16 (non-DW)	Description	Description

Page 1 of 4 of Report 505912

Complete Laboratory Solutions, Ros Muc, Connemara, Co. Galway

Complete Laboratory Solutions [Tel] 091 574355 [Fax] 091 574356 [Email] services@cls.ie [web] www.cls.ie

2 U/S Monnettia	COD(settled)	I,R	22	mg/l
29-11-22	VOC suite - (non-DW)	Ś	See attached excel	ug/l
	DALL 16 (a.e. DIM)	-	file	
	PAH 16 (non-DW) Extractable Hydrocarbons Water (C8-C40, Diesel Range	S	<0.010	ug/l
W 1260 H H H H H	and Lube Oil) by GC-FID	I,R	34 **Unknown Pattern	ug/l
	Boron, dissolved	I,R	<10	ug/l
	VOC + TIC (HS, GEO76)	S	See attached excel file	ug/l
	Vanadium, dissolved	I,R	<0.5	ug/l
	Chromium III	S	<0.03	mg/l
	SVOCs (W) (GEO94)	S	See attached excel file	ug/l
	Beryllium, dissolved	I,R	<0.5	ug/l
	PRO Water (C5-C12) by GC-FID	I,R	<10	ug/l
	Barium, dissolved	I,R	143	ug/l
	Selenium, dissolved	I,R	<0.5	ug/l
	Chromium, dissolved	I,R	<0.5	ug/l
	Cadmium, dissolved	I,R	<0.5	ug/l
	Mercury, dissolved	I,R	<0.05	ug/l
	Zinc, dissolved	I,R	<5	ug/l
	Arsenic, dissolved	I,R	<0.5	ug/l
	Nickel, dissolved	I,R	1	ug/l
	Lead, dissolved	I,R	<0.5	ug/l
	Turbidity	I,R	4.0	N.T.
	Conductivity @ 25 C	I,R	242	uS/c
	Chromium hexavalent in water	S	<0.003	mg/
	Copper, dissolved	I,R	<1	ug/l
	Chromium, total	I,R	1	ug/l
	SVOC TICs (GE094)	S	See attached excel	ug/l
	5VOC 11CS (GEO94)	3	file	ug/i
	рН	I,R	7.9	pН
	Suspended Solids	I,R	<2	Unit:

Page 2 of 4 of Report 505912

Complete Laboratory Solutions, Ros Muc, Connemara, Co. Galway

Complete Laboratory Solutions [Tel] 091 574355 [Fax] 091 574356 [Email] services@cls.ie [web] www.cls.ie

1556513	D/S Monnettia	Suspended Solids	I,R	<2	mg/l
	29-11-22	Turbidity	I,R	3.4	N.T.U.
	001101111111111111111111111111111111111	pH	I,R	7.6	pH Units
		Conductivity @ 25 C	I,R	477	uS/cm
		SVOC TICs (GE094)	S	See attached excel file	ug/l
		Chromium hexavalent in water	S	<0.003	mg/l
		Chromium, total	I,R	<0.6	ug/l
		Copper, dissolved	I,R	<1	ug/l
		Lead, dissolved	I,R	<0.5	ug/l
		Chromium, dissolved	I,R	<0.5	ug/l
		Nickel, dissolved	I,R	2	ug/l
		Cadmium, dissolved	I,R	<0.5	ug/l
		Arsenic, dissolved	I,R	1	ug/l
		Mercury, dissolved	I,R	<0.05	ug/l
		Selenium, dissolved	I,R	1	ug/l
		Zinc, dissolved	I,R	<5	ug/l
		Barium, dissolved	I,R	131	ug/l
		Boron, dissolved	I,R	13	ug/l
		PRO Water (C5-C12) by GC-FID	I,R	<10	ug/l
		VOC + TIC (HS, GEO76)	S	See attached excel file	ug/l
		Beryllium, dissolved	I,R	<0.5	ug/l
		Vanadium, dissolved	I,R	<0.5	ug/l
		SVOCs (W) (GE094)	S	See attached excel file	ug/l
		Chromium III	S	<0.03	mg/l
		Extractable Hydrocarbons Water (C8-C40, Diesel Range and Lube Oil) by GC-FID	I,R	66 **Unknown Pattern	ug/l
		COD(settled)	I,R	29	mg/l
		PAH 16 (non-DW)	S	< 0.010	ug/l
		VOC suite - (non-DW)	S	See attached excel file	ug/l

Approved by:

Ann Maria Nee

AnnMarie Nee Environmental Services Administrator

See below for test specifications and accreditation status.

This report only relates to items tested and shall not be reproduced but in full with the permission of CLS. est. is an estimated count.

CLS will test food, water and swabs samples within 24 hours of receipt.

Where samples have been taken by the Client, results apply to the samples as received.

Page 3 of 4 of Report 505912

Complete Laboratory Solutions, Ros Muc, Connemara, Co. Galway

Complete Laboratory Solutions [Tel] 091 574355 [Fax] 091 574356 [Email] services@cls.ie [web] www.cls.ie

In-House Test	Specification	Expanded Measurement of Uncertainty	17025	GMP/FDA*	ISO**
Suspended Solids	CLS 13	+/- 20.84 %	Yes	No	Yes
Turbidity	CLS 30	+/- 22.03 %	Yes	No	Yes
pH	CLS 26	+/- 0.133 pH units	Yes	No	Yes
Conductivity @ 25 C	CLS 67	+/- 4.92 %	Yes	No	Yes
Chromium, total	ICP-MS CLS129	+/- 8.38 %	Yes	No	Yes
Copper, dissolved	ICP-MS CLS 129	+/- 11.28 %	Yes	No	Yes
Lead, dissolved	ICP-MS CLS129	+/-20@100ug/l	Yes	No	Yes
Chromium, dissolved	ICP-MS CLS 129	+/- 8.38 %	Yes	No	Yes
Nickel, dissolved	ICP-MS CLS129	+/- 7.91 %	Yes	No	Yes
Cadmium, dissolved	ICP-MS CLS129	+/- 10.42 %	Yes	No	Yes
Arsenic, dissolved	ICP-MS CLS129	+/- 9.34 %	Yes	No	Yes
Mercury, dissolved	ICP-MS CLS 129	+/- 27.72 %	Yes	No	Yes
Selenium, dissolved	ICP-MS CLS129	+/-0.9@5ug/l	Yes	No	Yes
Zinc, dissolved	ICP-MS CLS 129	+/- 9.38 %	Yes	No	Yes
Barium, dissolved	ICP-MS CLS129	+/-33@250ug/l	Yes	No	Yes
Boron, dissolved	ICP-MS CLS129	+/-15@200ug/l	Yes	No	Yes
PRO Water (C5-C12) by GC-FID	CLS 148	+/- 29.7ug/l @ 200ug/l	Yes	No	Yes
Beryllium, dissolved	ICP-MS CLS129	+/- 11.67 %	Yes	No	Yes
Vanadium, dissolved	ICP-MS CLS 129	+/- 11.72 %	Yes	No	Yes
Extractable Hydrocarbons Water (C8-C40, Diesel Range and Lube Oil) by GC-FID	CLS 147	+/- 26.37@200ug/l	Yes	No	Yes
COD(settled)	CLS 52	+/- 4.48 %	Yes	No	Yes

^{*}Analysis carried out in a GMP approved, FDA inspected facility (MedPharma site only).

**Laboratory Analysis, Sampling, Food Safety Monitoring and Analysts on Contract are all ISO 9001 certified.

Lab No	Sample ID	Sample Condition on Receipt	Sampling Date
1556511	Monnettia drain 29-11-22	Good condition	29/11/2022
1556512	U/S Monnettia 29-11-22	Good condition	29/11/2022
1556513	D/S Monnettia 29-11-22	Good condition	29/11/2022

Complete Laboratory Solutions, Ros Muc, Connemara, Co. Galway

Complete Laboratory Solutions
[Tel] 091 574355
[Fax] 091 574356
[Email] services@cls.ie
[web] www.cls.ie

Client

CERTIFICATE OF ANALYSIS

Client : Stephen Stapleton, Compliance Officer

Bord na Móna (Derrinlough, Castletown, Blackwater

Blackwater Works, Blackwater,

Shannonbridge, Athlone,

Co. Westmeath

Report No. : 507694
Date of Receipt : 15/12/2022
Start Date of Analysis : 16/12/2022
Date of Report : 12/01/2023
Order Number : Pending

Sample taken by

Sample Description	Test	Ref.	Result	Units
Monnettia drain	Suspended Solids	I,R	4	mg/l
15.12.2022	Turbidity	I,R	3.1	N.T.U.
	pH	I,R	7.3	pН
				Units
	Conductivity @ 25 C	I,R	659	uS/cm
	SVOC TICs (GEO94)	S	See attached excel file	ug/l
	Chromium hexavalent in water	S	<0.003	mg/l
	Chromium, total	I,R	<0.6	ug/l
	Copper, dissolved	I,R	<1	ug/l
	Lead, dissolved	I,R	<0.5	ug/l
	Chromium, dissolved	I,R	<0.5	ug/l
	Nickel, dissolved	I,R	2	ug/l
	Cadmium, dissolved	I,R	<0.5	ug/l
	Arsenic, dissolved	I,R	1 (5)	ug/l
	Mercury, dissolved	I,R	< 0.05	ug/l
	Selenium, dissolved	I,R	1	ug/l
	Zinc, dissolved	I,R	79	ug/l
	Barium, dissolved	I,R	171	ug/l
			20	ug/l
	PRO Water (C5-C12) by GC-FID	I,R	<10	ug/l
	VOC + TIC (HS, GEO76)	S	See attached excel file	ug/l
		I,R	<0.5	ug/l
	Vanadium, dissolved	I,R	<0.5	ug/l
	SVOCs (W) (GEO94)	S	See attached excel file	ug/l
	Chromium III	S	< 0.03	mg/l
		I,R	158 **Unknown Pattern	ug/l
		I,R	78	mg/l
		S	See attached excel file	ug/l
	VOC suite - (non-DW)	S	See attached excel file	ug/l
	Description Monnettia drain	Monnettia drain 15.12.2022 Suspended Solids Turbidity pH Conductivity @ 25 C SVOC TICs (GE094) Chromium hexavalent in water Chromium, total Copper, dissolved Lead, dissolved Chromium, dissolved Nickel, dissolved Cadmium, dissolved Arsenic, dissolved Arsenic, dissolved Selenium, dissolved Selenium, dissolved Barium, dissolved Selenium, dissolved Tinc, dissolved Barium, dissolved Boron, dissolved Boron, dissolved Boron, dissolved PRO Water (C5-C12) by GC-FID VOC + TIC (HS, GE076) Beryllium, dissolved Vanadium, dissolved SVOCs (W) (GE094)	Monnettia drain 15.12.2022 Suspended Solids Turbidity pH Conductivity @ 25 C SVOC TICs (GE094) Chromium hexavalent in water Chromium, total Copper, dissolved Lead, dissolved Lead, dissolved I,R Chromium, dissolved Nickel, dissolved I,R Arsenic, dissolved I,R Arsenic, dissolved I,R Selenium, dissolved I,R Selenium, dissolved I,R Barium, dissolved I,R Selenium, dissolved I,R Boron, dissolved I,R Boron, dissolved I,R Boron, dissolved I,R Boron, dissolved I,R Selenium, dissolved I,R R PRO Water (C5-C12) by GC-FID VOC + TIC (HS, GE076) Selenium, dissolved I,R Voc + TIC (HS, GE076)	Description

Page 1 of 4 of Report 507694

Complete Laboratory Solutions, Ros Muc, Connemara, Co. Galway

Complete Laboratory Solutions [Tel] 091 574355 [Fax] 091 574356 [Email] services@cls.ie [web] www.cls.ie

COD(settled)	I,R	<10	mg/l
			ug/l
			ug/l
			ug/l
	1,10	133 Olikilowii i decelii	ug/ i
	TR	<10	ug/l
			ug/l
			ug/l
			mg/l
			ug/l
	I,R		ug/l
Cadmium, dissolved	I,R	<0.5	ug/l
Mercury, dissolved	I,R	<0.05	ug/l
Zinc, dissolved	I,R	14	ug/l
	I,R	<0.5	ug/l
	_		ug/l
			ug/l
			N.T.L
			uS/cr
			mg/l
			ug/l
			ug/l
		Octadecenamide, (Z) 102.4	ug/l
рН	I,R	8.1	pH Units
	VOC suite - (non-DW) PAH 16 (non-DW) Extractable Hydrocarbons Water (C8-C40, Diesel Range and Lube Oil) by GC-FID Boron, dissolved VOC + TIC (HS, GEO76) Vanadium, dissolved Chromium III SVOCs (W) (GEO94) Beryllium, dissolved PRO Water (C5-C12) by GC-FID Barium, dissolved Selenium, dissolved Chromium, dissolved Chromium, dissolved Cadmium, dissolved	VOC suite - (non-DW) PAH 16 (non-DW) Extractable Hydrocarbons Water (C8-C40, Diesel Range and Lube Oil) by GC-FID Boron, dissolved VOC + TIC (HS, GEO76) Vanadium, dissolved I,R Chromium III SVOCs (W) (GEO94) Beryllium, dissolved I,R PRO Water (C5-C12) by GC-FID I,R Barium, dissolved I,R Chromium, dissolved I,R Chromium, dissolved I,R Chromium, dissolved I,R Cadmium, dissolved I,R Conductivity @ 25 C Chromium hexavalent in water Copper, dissolved I,R Chromium, total SVOC TICs (GEO94) I,R	VOC suite - (non-DW)SSee attached excel filePAH 16 (non-DW)SSee attached excel fileExtractable Hydrocarbons Water (C8-C40, Diesel Range and Lube Oil) by GC-FIDI,R153 **Unknown PatternBoron, dissolvedI,R<10

Page 2 of 4 of Report 507694

Complete Laboratory Solutions, Ros Muc, Connemara, Co. Galway

Complete Laboratory Solutions [Tel] 091 574355 [Fax] 091 574356 [Email] services@cls.ie [web] www.cls.ie

1564142	D/S Monnettia	Suspended Solids	I,R	4	mg/l
	15.12.2022	Turbidity	I,R	6.5	N.T.U.
	011/11/11/11	pH	I,R	7.8	pH Units
		Conductivity @ 25 C	I,R	591	uS/cm
		SVOC TICs (GEO94)	S	See attached excel file 9- Octadecenamide, (Z)-84.3	ug/l
		Chromium hexavalent in water	S	<0.003	mg/l
		Chromium, total	I,R	<0.6	ug/l
	- mall(m) (m)	Copper, dissolved	I,R	<1	ug/l
		Lead, dissolved	I,R	<0.5	ug/l
		Chromium, dissolved	I,R	<0.5	ug/l
		Nickel, dissolved	I,R	2	ug/l
		Cadmium, dissolved	I,R	<0.5	ug/l
		Arsenic, dissolved	I,R	1	ug/l
		Mercury, dissolved	I,R	<0.05	ug/l
		Selenium, dissolved	I,R	1	ug/l
		Zinc, dissolved	I,R	11	ug/l
		Barium, dissolved	I,R	161	ug/l
		Boron, dissolved	I,R	14	ug/l
		PRO Water (C5-C12) by GC-FID	I,R	<10	ug/l
		VOC + TIC (HS, GEO76)	S	See attached excel file	ug/l
		Beryllium, dissolved	I,R	<0.5	ug/l
		Vanadium, dissolved	I,R	<0.5	ug/l
		SVOCs (W) (GEO94)	S	See attached excel file	ug/l
		Chromium III	S	<0.03	mg/l
		Extractable Hydrocarbons Water (C8-C40, Diesel Range and Lube Oil) by GC-FID	I,R	189 **Unknown Pattern	ug/l
		COD(settled)	I,R	26	mg/l
		PAH 16 (non-DW)	S	See attached excel file	ug/l
		VOC suite - (non-DW)	S	See attached excel file	ug/l

Approved by:

AnnMarie Nee Environmental Services Administrator

Ann Moris Nee

See below for test specifications and accreditation status.

This report only relates to items tested and shall not be reproduced but in full with the permission of CLS. est. is an estimated count.

CLS will test food, water and swabs samples within 24 hours of receipt.

Where samples have been taken by the Client, results apply to the samples as received.

Page 3 of 4 of Report 507694

Complete Laboratory Solutions, Ros Muc, Connemara, Co. Galway

Complete Laboratory Solutions [Tel] 091 574355 [Fax] 091 574356 [Email] services@cls.ie [web] www.cls.ie

In-House Test	Specification	Expanded Measurement of Uncertainty	17025	GMP/FDA*	ISO**
Suspended Solids	CLS 13	+/- 20.84 %	Yes	No	Yes
Turbidity	CLS 30	+/- 22.03 %	Yes	No	Yes
pH	CLS 26	+/- 0.133 pH units	Yes	No	Yes
Conductivity @ 25 C	CLS 67	+/- 4.92 %	Yes	No	Yes
Chromium, total	ICP-MS CLS129	+/- 8.38 %	Yes	No	Yes
Copper, dissolved	ICP-MS CLS 129	+/- 11.28 %	Yes	No	Yes
Lead, dissolved	ICP-MS CLS129	+/-20@100ug/l	Yes	No	Yes
Chromium, dissolved	ICP-MS CLS 129	+/- 8.38 %	Yes	No	Yes
Nickel, dissolved	ICP-MS CLS129	+/- 7.91 %	Yes	No	Yes
Cadmium, dissolved	ICP-MS CLS129	+/- 10.42 %	Yes	No	Yes
Arsenic, dissolved	ICP-MS CLS129	+/- 9.34 %	Yes	No	Yes
Mercury, dissolved	ICP-MS CLS 129	+/- 27.72 %	Yes	No	Yes
Selenium, dissolved	ICP-MS CLS129	+/-0.9@5ug/l	Yes	No	Yes
Zinc, dissolved	ICP-MS CLS 129	+/- 9.38 %	Yes	No	Yes
Barium, dissolved	ICP-MS CLS129	+/-33@250ug/l	Yes	No	Yes
Boron, dissolved	ICP-MS CLS129	+/-15@200ug/l	Yes	No	Yes
PRO Water (C5-C12) by GC-FID	CLS 148	+/- 29.7ug/l @ 200ug/l	Yes	No	Yes
Beryllium, dissolved	ICP-MS CLS129	+/- 11.67 %	Yes	No	Yes
Vanadium, dissolved	ICP-MS CLS 129	+/- 11.72 %	Yes	No	Yes
Extractable Hydrocarbons Water (C8-C40, Diesel Range and Lube Oil) by GC-FID	CLS 147	+/- 26.37@200ug/l	Yes	No	Yes
COD(settled)	CLS 52	+/- 4.48 %	Yes	No	Yes

^{*}Analysis carried out in a GMP approved, FDA inspected facility (MedPharma site only).

**Laboratory Analysis, Sampling, Food Safety Monitoring and Analysts on Contract are all ISO 9001 certified.

Lab No	Sample ID	Sample Condition on Receipt	Sampling Date
1564140	Monnettia drain 15.12.2022	Good condition	15/12/2022
1564141	U/S Monnettia 15.12.2022	Good condition	15/12/2022
1564142	D/S Monnettia 15.12.2022	Good condition	15/12/2022

Complete Laboratory Solutions, Ros Muc, Connemara, Co. Galway

CERTIFICATE OF ANALYSIS

Client : Stephen Stapleton, Compliance Officer

Bord na Móna (Derrinlough, Castletown, Blackwater

Blackwater Works, Blackwater, Shannonbridge, Athlone,

Co. Westmeath

Report No. : 510639
Date of Receipt : 31/01/2023
Start Date of Analysis : 31/01/2023
Date of Report : 21/02/2023

Order Number

Sample taken by : Client

ib No	Sample Description	Test	Ref.	Result	Units
76789	SW-101 D/S Monettia	Suspended Solids	I,R	3	mg/l
	31-01-23	Turbidity	I,R	2.1	N.T.U
		pH	I,R	7.8	рН
				1	Units
		Conductivity @ 25 C	I,R	540	uS/cr
		SVOC TICs (GEO94)	S	See attached PDF file	ug/l
		Chromium hexavalent in water	S	< 0.003	mg/l
		Chromium, total	I,R	<0.6	ug/l
		Copper, dissolved	I,R	<1	ug/l
		Lead, dissolved	I,R	<0.5	ug/l
		Chromium, dissolved	I,R	<0.05	ug/l
		Nickel, dissolved	I,R	100000000000000000000000000000000000000	ug/l
		Cadmium, dissolved	I,R	<0.5	ug/l
		Arsenic, dissolved	I,R	1 /	ug/l
		Mercury, dissolved	I,R	<0.05	ug/l
		Selenium, dissolved	I,R	1	ug/l
		Zinc, dissolved	I,R	<5	ug/l
		Barium, dissolved	I,R	138	ug/l
		Boron, dissolved	I,R	11	ug/l
		PRO Water (C5-C12) by GC-FID	I,R	<10	ug/l
		VOC + TIC (HS, GE076)	S	See attached PDF file	ug/l
		Beryllium, dissolved		<0.5	ug/l
		Vanadium, dissolved	I,R I,R	<0.5	ug/l
			S S	See attached excel	
		SVOCs (W) (GEO94)	5	file	ug/l
		Chromium III	S	<0.03	mg/l
		Extractable Hydrocarbons Water (C8-C40, Diesel Range and Lube Oil) by GC-FID	I,R	20 **Unknown Pattern	ug/l
		Chromium, total (in water)	S	<0.002	mg/l
		COD(settled)	I,R	14	mg/l
		PAH 16 (non-DW) GEO81	S	<0.020	ug/l
		VOC suite - (non-DW)	S	Please see attached	ug/l
			Color	excel file	

Page 1 of 12 of Report 510639

Complete Laboratory Solutions, Ros Muc, Connemara, Co. Galway

1576797	SW-102 Monettia Outfall 31-01-23	VOC suite - (non-DW)	S	Please see attached excel file	ug/l
WOLDS:	31 01 23	COD(settled)	I,R	21	mg/l
		PAH 16 (non-DW) GEO81	S	Please see attached excel file	ug/l
2011/11		Extractable Hydrocarbons Water (C8-C40, Diesel Range and Lube Oil) by GC-FID	I,R	18 **Unknown Pattern	ug/l
. 1000	\$2000000000000000000000000000000000000	Chromium, total (in water)	S	<0.002	mg/l
- 700		SVOCs (W) (GEO94)	S	Please see attached excel file	ug/l
		Chromium III	S	<0.03	mg/l
		Beryllium, dissolved	I,R	<0.5	ug/l
		Vanadium, dissolved	I,R	<0.5	ug/l
		PRO Water (C5-C12) by GC-FID	I,R	<10	ug/l
				See attached PDF file	
		VOC + TIC (HS, GE076)	S		ug/l
		Barium, dissolved	I,R	141	ug/l
		Boron, dissolved	I,R	11	ug/l
		Selenium, dissolved	I,R	1	ug/l
		Zinc, dissolved	I,R	<5	ug/l
		Arsenic, dissolved	I,R	1	ug/l
		Mercury, dissolved	I,R	<0.05	ug/l
		Nickel, dissolved	I,R	2	ug/l
		Cadmium, dissolved	I,R	<0.5	ug/l
		Lead, dissolved	I,R	<0.5	ug/l
		Chromium, dissolved	I,R	<0.5	ug/l
		Chromium, total	I,R	<0.6	ug/l
		Copper, dissolved	I,R	<1	ug/l
		SVOC TICs (GE094)	S	See attached PDF file	ug/l
		Chromium hexavalent in water	S	<0.003	mg/l
		pH	I,R	7.8	pH Units
		Conductivity @ 25 C	I,R	545	uS/cm
		Suspended Solids	I,R	<2	mg/l
		Turbidity	I,R	1.6	N.T.U.

Page 2 of 12 of Report 510639

Complete Laboratory Solutions, Ros Muc, Connemara, Co. Galway

SVOC TICS Copper, di Chromium Chromium Lead, disso Cadmium, Nickel, dis Mercury, d Arsenic, di Zinc, disso Selenium, Boron, diss Barium, di VOC + TIC PRO Water Vanadium, Beryllium, Chromium SVOCs (W Chromium Extractable Range and	hexavalent in water (GE094) ssolved total	I,R	1.1	N.T.L mg/I uS/cr pH Units mg/I ug/I ug/I ug/I ug/I ug/I ug/I ug/I u
Conductivi pH Chromium SVOC TICs Copper, di Chromium Chromium Lead, disso Cadmium, Nickel, dis Mercury, d Arsenic, di Zinc, disso Selenium, Boron, dis: Barium, di VOC + TIC PRO Water Vanadium, Beryllium, Chromium SVOCs (W Chromium Extractable Range and	hexavalent in water (GE094) ssolved total	I,R I,R I,R S S S I,R	551 8.1 <0.003 See attached PDF file <1 <0.6 <0.5 <0.5 <0.5 <0.5 <0.5 <1.0 145 See attached PDF file <10 <10 145 See attached PDF file <10 <0.5 <0.5 <0.5 <10 145 See attached PDF file <10 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	uS/cr pH Units mg/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l u
pH Chromium SVOC TICs Copper, di Chromium Chromium Lead, disso Cadmium, Nickel, dis Mercury, d Arsenic, di Zinc, disso Selenium, Boron, diss Barium, di VOC + TIC PRO Water Vanadium, Beryllium, Chromium SVOCs (W Chromium Extractable Range and	hexavalent in water (GE094) ssolved , total , dissolved olved dissolved solved dissolved solved dissolved solved dissolved clyed dissolved solved sol	I,R S S I,R	8.1 <0.003 See attached PDF file <1 <0.6 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <1.0 145 See attached PDF file <10 <0.5 <0.5 <10 145 See attached PDF file <10 <0.5 <0.5 <0.5 <0.5 <10 145 See attached PDF file <10 <0.5 <0.5 <0.03 Please see attached excel file <0.002	pH Units mg/I ug/I ug/I ug/I ug/I ug/I ug/I ug/I u
SVOC TICS Copper, di Chromium Chromium Lead, disso Cadmium, Nickel, dis Mercury, d Arsenic, di Zinc, disso Selenium, Boron, diss Barium, di VOC + TIC PRO Water Vanadium, Beryllium, Chromium SVOCs (W Chromium Extractable Range and	s (GEO94) ssolved , total , dissolved olved dissolved solved dissolved solved dissolved solved dissolved solved dissolved solved solved solved solved solved solved solved justification (C5-C12) by GC-FID dissolved dissolved dissolved dissolved dissolved dissolved solved dissolved dissolved LUBS (GEO94) , total (in water) e Hydrocarbons Water (C8-C40 Lube Oil) by GC-FID	S I,R	See attached PDF file <1 <0.6 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <1.0 145 See attached PDF file <10 <0.5 <0.5 <10 145 See attached PDF file <10 <0.5 <0.5 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.00	mg/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l u
SVOC TICS Copper, di Chromium Chromium Lead, disso Cadmium, Nickel, dis Mercury, d Arsenic, di Zinc, disso Selenium, Boron, diss Barium, di VOC + TIC PRO Water Vanadium, Beryllium, Chromium SVOCs (W Chromium Extractable Range and	s (GEO94) ssolved , total , dissolved olved dissolved solved dissolved solved dissolved solved dissolved solved dissolved solved solved solved solved solved solved solved justification (C5-C12) by GC-FID dissolved dissolved dissolved dissolved dissolved dissolved solved dissolved dissolved LUBS (GEO94) , total (in water) e Hydrocarbons Water (C8-C40 Lube Oil) by GC-FID	S I,R	See attached PDF file <1 <0.6 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <1.0 145 See attached PDF file <10 <0.5 <0.5 <10 145 See attached PDF file <10 <0.5 <0.5 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.00	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l
Copper, di Chromium Chromium Lead, disso Cadmium, Nickel, dis Mercury, d Arsenic, di Zinc, disso Selenium, Boron, dis: Barium, di VOC + TIC PRO Water Vanadium, Beryllium, Chromium SVOCs (W Chromium Extractable Range and	ssolved , total , dissolved blved dissolved solved dissolved solved dissolved solved dissolved solved c (HS, GEO76) c (C5-C12) by GC-FID dissolved dissolved dissolved c (HS, GEO94) c (HS, GEO94) dissolved dissolved dissolved dissolved dissolved LIII dissolved	I,R I,R I,R I,R I,R I,R I,R I,R I,R I,R	<1 <0.6 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l
Chromium Chromium Lead, disso Cadmium, Nickel, dis Mercury, d Arsenic, di Zinc, disso Selenium, Boron, dis: Barium, di VOC + TIC PRO Water Vanadium, Beryllium, Chromium SVOCs (W Chromium Extractable Range and	, total , dissolved blved dissolved solved lissolved solved dissolved solved dissolved solved c (HS, GEO76) c (C5-C12) by GC-FID dissolved dissolved dissolved dissolved c (HS, GEO76) c (C5-C12) by GC-FID dissolved dissolved dissolved LIII) (GEO94) c total (in water) c Hydrocarbons Water (C8-C40) Lube Oil) by GC-FID	I,R I,R I,R I,R I,R I,R I,R I,R I,R I,R	<0.6 <0.5 <0.5 <0.5 <0.5 <0.5 <0.05 <0.5 <0.	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l
Chromium Lead, disso Cadmium, Nickel, dis Mercury, d Arsenic, di Zinc, disso Selenium, Boron, dis: Barium, di VOC + TIC PRO Water Vanadium, Beryllium, Chromium SVOCs (W Chromium Extractable Range and	, dissolved blved dissolved solved lissolved sissolved solved dissolved solved c (HS, GEO76) c (C5-C12) by GC-FID dissolved dissolved dissolved dissolved c (HS, GEO76) c (C5-C12) by GC-FID dissolved dissolved dissolved LIII) (GEO94) c total (in water) c Hydrocarbons Water (C8-C40) Lube Oil) by GC-FID	I,R I,R I,R I,R I,R I,R I,R I,R I,R I,R	<0.5 <0.5 <0.5 <0.5 <0.5 <0.05 <0.5 <0.5	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l
Lead, disson Cadmium, Nickel, dis Mercury, disson Selenium, Boron, disson Barium, di VOC + TIC PRO Water Vanadium, Beryllium, Chromium SVOCs (W	olved dissolved solved lissolved sissolved solved dissolved solved solved c (HS, GEO76) c (C5-C12) by GC-FID dissolved dissolved dissolved dissolved dissolved dissolved LII) (GEO94) c total (in water) e Hydrocarbons Water (C8-C40 Lube Oil) by GC-FID	I,R I,R I,R I,R I,R I,R I,R I,R I,R S I,R I,R S S I,R I,R	<0.5 <0.5 <0.5 <0.05 <0.5 <0.5 <5 <0.5 <10 145 See attached PDF file <10 <0.5 <0.5 <0.5 <10 145 See attached PDF file <10 <0.5 <0.5 <0.03 Please see attached excel file <0.002	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l
Cadmium, Nickel, dis Mercury, d Arsenic, di Zinc, disso Selenium, Boron, dis: Barium, di VOC + TIC PRO Water Vanadium, Beryllium, Chromium SVOCs (W Chromium Extractable Range and	dissolved solved lissolved ssolved slived dissolved solved solved solved (CHS, GEO76) (C5-C12) by GC-FID dissolved dissolved dissolved dissolved (III) (GEO94) , total (in water) e Hydrocarbons Water (C8-C40 Lube Oil) by GC-FID	I,R I,R I,R I,R I,R I,R I,R I,R S I,R I,R S,S S,S	<0.5 <0.5 <0.05 <0.5 <0.5 <5 <0.5 <10 145 See attached PDF file <10 <0.5 <0.5 <0.03 Please see attached excel file <0.002	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l
Nickel, dis Mercury, d Arsenic, di Zinc, disso Selenium, Boron, dis: Barium, di VOC + TIC PRO Water Vanadium, Beryllium, Chromium SVOCs (W Chromium Extractable Range and	solved lissolved ssolved slived dissolved solved solved solved (CHS, GEO76) (C5-C12) by GC-FID dissolved dissolved dissolved dissolved JII (GEO94) , total (in water) e Hydrocarbons Water (C8-C40 Lube Oil) by GC-FID	I,R I,R I,R I,R I,R I,R I,R S I,R I,R I,R S S	<0.5 <0.05 <0.5 <0.5 <10 145 See attached PDF file <10 <0.5 <0.5 <0.03 Please see attached excel file <0.002	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l
Mercury, d Arsenic, di Zinc, disso Selenium, Boron, diss Barium, di VOC + TIC PRO Water Vanadium, Beryllium, Chromium SVOCs (W Chromium Extractable Range and	lissolved ssolved slived dissolved solved solved solved (CHS, GEO76) (C5-C12) by GC-FID dissolved dissolved JII (GEO94) , total (in water) e Hydrocarbons Water (C8-C40 Lube Oil) by GC-FID	I,R I,R I,R I,R I,R I,R I,R S I,R I,R S S	<0.05 <0.5 <0.5 <0.5 <10 145 See attached PDF file <10 <0.5 <0.5 <0.03 Please see attached excel file <0.002	ug/l ug/l
Arsenic, di Zinc, disso Selenium, Boron, diss Barium, di VOC + TIC PRO Water Vanadium, Beryllium, Chromium SVOCs (W Chromium Extractable Range and	ssolved blved dissolved solved solved (CHS, GEO76) dissolved dissolved dissolved dissolved dissolved distolved dissolved dissolved LII (GEO94) total (in water) Hydrocarbons Water (C8-C40) Lube Oil) by GC-FID	I,R I,R I,R I,R I,R I,R S I,R I,R S S	<0.5 <5 <0.5 <10 145 See attached PDF file <10 <0.5 <0.5 <0.03 Please see attached excel file <0.002	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l
Zinc, disso Selenium, Boron, disso Barium, di VOC + TIC PRO Water Vanadium, Beryllium, Chromium SVOCs (W	olived dissolved solved solved C (HS, GEO76) C (C5-C12) by GC-FID dissolved dissolved III) (GEO94) , total (in water) E Hydrocarbons Water (C8-C40 Lube Oil) by GC-FID	I,R I,R I,R I,R S I,R I,R I,R S S	<5 <0.5 <10 145 See attached PDF file <10 <0.5 <0.5 <0.03 Please see attached excel file <0.002	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l
Selenium, Boron, dis Barium, di VOC + TIC PRO Water Vanadium, Beryllium, Chromium SVOCs (W Chromium Extractable Range and	dissolved solved ssolved C (HS, GEO76) C (C5-C12) by GC-FID dissolved dissolved III) (GEO94) , total (in water) E Hydrocarbons Water (C8-C40 Lube Oil) by GC-FID	I,R I,R I,R S I,R I,R I,R S S	<0.5 <10 145 See attached PDF file <10 <0.5 <0.5 <0.03 Please see attached excel file <0.002	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l
Boron, distance Barium, distance Barium, distance Barium, distance Von Water Vanadium, Beryllium, Chromium SVOCs (Water Barium) Chromium Extractable Range and	solved ssolved C (HS, GEO76) C (C5-C12) by GC-FID dissolved dissolved III) (GEO94) , total (in water) Hydrocarbons Water (C8-C40 Lube Oil) by GC-FID	I,R I,R S I,R I,R I,R S S	<10 145 See attached PDF file <10 <0.5 <0.5 <0.03 Please see attached excel file <0.002	ug/l ug/l ug/l ug/l ug/l ug/l mg/l
Barium, di VOC + TIC PRO Water Vanadium, Beryllium, Chromium SVOCs (W Chromium Extractable Range and	ssolved C (HS, GEO76) C (C5-C12) by GC-FID dissolved dissolved III) (GEO94) , total (in water) Hydrocarbons Water (C8-C40 Lube Oil) by GC-FID	I,R S I,R I,R I,R S S	See attached PDF file <10 <0.5 <0.5 <0.03 Please see attached excel file <0.002	ug/l ug/l ug/l ug/l ug/l mg/l ug/l
VOC + TIC PRO Water Vanadium, Beryllium, Chromium SVOCs (W Chromium Extractable Range and	C (HS, GEO76) C (C5-C12) by GC-FID dissolved dissolved III) (GEO94) , total (in water) Hydrocarbons Water (C8-C40 Lube Oil) by GC-FID	S I,R I,R I,R S S S	See attached PDF file <10 <0.5 <0.5 <0.03 Please see attached excel file <0.002	ug/l ug/l ug/l ug/l mg/l ug/l
PRO Water Vanadium, Beryllium, Chromium SVOCs (W Chromium Extractable Range and	r (C5-C12) by GC-FID dissolved dissolved III) (GEO94) , total (in water) e Hydrocarbons Water (C8-C40 Lube Oil) by GC-FID	I,R I,R I,R S S	<10 <0.5 <0.5 <0.03 Please see attached excel file <0.002	ug/l ug/l ug/l mg/l ug/l
Vanadium, Beryllium, Chromium SVOCs (W Chromium Extractable Range and	dissolved dissolved III) (GEO94) , total (in water) e Hydrocarbons Water (C8-C40	I,R I,R S S	<0.5 <0.03 Please see attached excel file <0.002	ug/l ug/l mg/l ug/l
Beryllium, Chromium SVOCs (W Chromium Extractable Range and	dissolved III) (GEO94) , total (in water) e Hydrocarbons Water (C8-C40 Lube Oil) by GC-FID	I,R S S	<0.5 <0.03 Please see attached excel file <0.002	ug/l mg/l ug/l
Chromium SVOCs (W Chromium Extractable Range and	III) (GEO94) , total (in water) e Hydrocarbons Water (C8-C40 Lube Oil) by GC-FID	S S	<0.03 Please see attached excel file <0.002	mg/l ug/l
SVOCs (W Chromium Extractable Range and) (GEO94) , total (in water) e Hydrocarbons Water (C8-C40 l Lube Oil) by GC-FID	S	Please see attached excel file <0.002	ug/l
Extractable Range and	e Hydrocarbons Water (C8-C40 Lube Oil) by GC-FID		<0.002	mg/l
Extractable Range and	e Hydrocarbons Water (C8-C40 Lube Oil) by GC-FID			
DAH 16 (n		10.00	Pattern	ug/l
PAIT 10 (III	on-DW) GEO81	S	Please see attached excel file	ug/l
COD(settle	ed)	I,R	12	mg/l
VOC suite	- (non-DW)	S	Please see attached excel file	ug/l

Page 3 of 12 of Report 510639

Complete Laboratory Solutions, Ros Muc, Connemara, Co. Galway

1576799	SW-201 Monettia boundary drain 31-01-23	VOC suite - (non-DW)	S	Please see attached excel file	ug/l
2011/01/11		COD(settled)	I,R	31	mg/l
		PAH 16 (non-DW) GEO81	S	Please see attached excel file	ug/l
		Extractable Hydrocarbons Water (C8-C40, Diesel Range and Lube Oil) by GC-FID	I,R	31 **Unknown Pattern	ug/l
		Chromium, total (in water)	S	<0.002	mg/l
		SVOCs (W) (GE094)	S	Please see attached excel file	ug/l
		Chromium III	S	<0.03	mg/l
		Beryllium, dissolved	I,R	<0.5	ug/l
		Vanadium, dissolved		<0.5	
			I,R		ug/l
		PRO Water (C5-C12) by GC-FID	I,R	<10	ug/l
		VOC + TIC (HS, GEO76)	S	See attached PDF file	ug/l
		Barium, dissolved	I,R	153	ug/l
		Boron, dissolved	I,R	16	ug/l
		Selenium, dissolved	I,R	1	ug/l
		Zinc, dissolved	I,R	<5	ug/l
		Arsenic, dissolved	I,R	1	ug/l
		Mercury, dissolved	I,R	<0.05	ug/l
		Nickel, dissolved	I,R	2	ug/l
		Cadmium, dissolved	I,R	<0.5	ug/l
		Lead, dissolved	I,R	<0.5	ug/l
		Chromium, dissolved	I,R	<0.5	ug/l
		Chromium, total	I,R	<0.6	ug/l
		Copper, dissolved	I,R	<1	ug/l
		SVOC TICs (GE094)	S	See attached PDF file	ug/l
		Chromium hexavalent in water	S	<0.003	mg/l
		pH	I,R	7.5	pН
		Conductivity @ 25 C	I,R	672	Units uS/cm
		Suspended Solids	I,R	3	mg/l
		Turbidity	I,R	1.6	N.T.U.

Page 4 of 12 of Report 510639

Complete Laboratory Solutions, Ros Muc, Connemara, Co. Galway

Turbidity	I,R	1.4	N.T.U.
			mg/l
			uS/cm
			pH
1111 - E-120 -	V 20 187		Units
Chromium hexavalent in water	S	< 0.003	mg/l
SVOC TICs (GEO94)	S	See attached PDF file	ug/l
Copper, dissolved	I,R	<1	ug/l
	I,R		ug/l
	I,R		ug/l
			ug/l
	I,R		ug/l
			mg/l
		excel file	ug/l
Chromium, total (in water)		<0.002	mg/l
Range and Lube Oil) by GC-FID	I,R	Pattern	ug/l
	S	excel file	ug/l
COD(settled)	I,R		mg/l
VOC suite - (non-DW)	S	Please see attached excel file	ug/l
	SVOC TICs (GEO94) Copper, dissolved Chromium, total Chromium, dissolved Lead, dissolved Cadmium, dissolved Nickel, dissolved Mercury, dissolved Arsenic, dissolved Zinc, dissolved Selenium, dissolved Boron, dissolved VOC + TIC (HS, GEO76) PRO Water (C5-C12) by GC-FID Vanadium, dissolved Beryllium, dissolved Chromium III SVOCs (W) (GEO94) Chromium, total (in water) Extractable Hydrocarbons Water (C8-C40, Diesel	Suspended Solids Conductivity @ 25 C pH I,R Chromium hexavalent in water SVOC TICs (GE094) Copper, dissolved Chromium, total Chromium, total I,R Chromium, dissolved I,R Chromium, dissolved I,R Cadmium, dissolved I,R Nickel, dissolved I,R Nickel, dissolved I,R Arsenic, dissolved I,R Selenium, dissolved I,R Selenium, dissolved I,R Solvenium, dissolved I,R Solvenium, dissolved I,R Solvenium, dissolved I,R Boron, dissolved I,R Boron, dissolved I,R VOC + TIC (HS, GE076) SPRO Water (C5-C12) by GC-FID Vanadium, dissolved I,R Beryllium, dissolved I,R Chromium III SVOCs (W) (GE094) S Chromium, total (in water) Extractable Hydrocarbons Water (C8-C40, Diesel Range and Lube Oil) by GC-FID PAH 16 (non-DW) GE081 S COD(settled)	Suspended Solids Conductivity @ 25 C pH I,R 7.5 Chromium hexavalent in water S S CO.003 SVOC TICs (GE094) S See attached PDF file Copper, dissolved I,R Chromium, total Chromium, dissolved I,R Chromium, dissolved I,R Cadmium, dissolved I,R Cadmium, dissolved I,R Cadmium, dissolved I,R

Page 5 of 12 of Report 510639

Complete Laboratory Solutions, Ros Muc, Connemara, Co. Galway

1576801	Top Drain Monettia 31-01-23	VOC suite - (non-DW)	S	Please see attached excel file	ug/l
1111111111		COD(settled)	I,R	36	mg/l
3//////		PAH 16 (non-DW) GEO81	Ś	Please see attached excel file	ug/l
		Extractable Hydrocarbons Water (C8-C40, Diesel Range and Lube Oil) by GC-FID	I,R	17 **Unknown Pattern	ug/l
. 1111.	\$	Chromium, total (in water)	S	<0.002	mg/l
100		SVOCs (W) (GEO94)	S	Please see attached excel file	ug/l
		Chromium III	S	<0.03	mg/l
		Beryllium, dissolved	I,R	<0.5	ug/l
		Vanadium, dissolved	I,R	<0.5	ug/l
		PRO Water (C5-C12) by GC-FID	I,R	<10	ug/l
				See attached PDF file	
		VOC + TIC (HS, GE076)	S		ug/l
		Barium, dissolved	I,R	155	ug/l
		Boron, dissolved	I,R	19	ug/l
1		Selenium, dissolved	I,R	1	ug/l
1		Zinc, dissolved	I,R	7	ug/l
1		Arsenic, dissolved	I,R	1	ug/l
1		Mercury, dissolved	I,R	<0.05	ug/l
1		Nickel, dissolved	I,R	2	ug/l
1		Cadmium, dissolved	I,R	<0.5	ug/l
		Lead, dissolved	I,R	<0.5	ug/l
		Chromium, dissolved	I,R	<0.5	ug/l
		Chromium, total	I,R	1	ug/l
		Copper, dissolved	I,R	<1	ug/l
		SVOC TICs (GE094)	S	See attached PDF file	ug/l
		Chromium hexavalent in water	S	<0.003	mg/l
		pH	I,R	7.5	pH Units
		Conductivity @ 25 C	I,R	663	uS/cm
		Suspended Solids	I,R	2	mg/l
		Turbidity	I,R	1.6	N.T.U.

Page 6 of 12 of Report 510639

Complete Laboratory Solutions, Ros Muc, Connemara, Co. Galway

802 Middle Drain Monettia	Turbidity	I,R	3.1	N.T.U.
31-01-23	Suspended Solids	I,R	<2	mg/l
	Conductivity @ 25 C	I,R	554	uS/cm
WWW. 1994 1994 1995 1995 1995 1995 1995 1995 1995 1995 1995 1995 1995 1995 1995	pH	I,R	7.1	рH
		-	.0.000	Units
	Chromium hexavalent in water	S	<0.003	mg/l
	SVOC TICs (GE094)	S	See attached PDF file	ug/l
288 - Maria Maria 1988 - 1888	Copper, dissolved	I,R	<1	ug/l
	Chromium, total	I,R	1	ug/l
	Chromium, dissolved Lead, dissolved	I,R	<0.5 <0.5	ug/l
	Cadmium, dissolved	I,R I,R	<0.5	ug/l ug/l
	Nickel, dissolved	I,R	1	ug/l
	Mercury, dissolved	I,R	<0.05	ug/l
	Arsenic, dissolved	I,R	2	ug/l
	Zinc, dissolved	I,R	6	ug/l
	Selenium, dissolved	I,R	<0.5	ug/l
	Boron, dissolved	I,R	12	ug/l
	Barium, dissolved	I,R	94	ug/l
	VOC + TIC (HS, GEO76)	S S	See attached PDF file	ug/l
	PRO Water (C5-C12) by GC-FID	I,R	<10	ug/l
	Vanadium, dissolved	I,R	<0.5	ug/l
	Beryllium, dissolved	I,R	<0.5	ug/l
	Chromium III	S	<0.03	mg/l
	SVOCs (W) (GEO94)	S	Please see attached excel file	ug/l
	Chromium, total (in water)	S	<0.002	mg/l
	Extractable Hydrocarbons Water (C8-C40, Diesel Range and Lube Oil) by GC-FID	I,R	18 **Unknown Pattern	ug/l
	PAH 16 (non-DW) GEO81	S	Please see attached excel file	ug/l
	COD(settled)	I,R	71	mg/l
	VOC suite - (non-DW)	S	Please see attached	ug/l
			excel file	

Page 7 of 12 of Report 510639

Complete Laboratory Solutions, Ros Muc, Connemara, Co. Galway

	1171117117171718/87888878/8				minim.
1576803	Silt Pond A Monettia 31-01-23	VOC suite - (non-DW)	S	Please see attached excel file	ug/l
2011/1/11		COD(settled)	I,R	41	mg/l
		PAH 16 (non-DW) GEO81	S	Please see attached excel file	ug/l
		Extractable Hydrocarbons Water (C8-C40, Diesel Range and Lube Oil) by GC-FID	I,R	17 **Unknown Pattern	ug/l
.7000		Chromium, total (in water)	S	<0.002	mg/l
300		SVOCs (W) (GE094)	S	Please see attached	ug/l
		Characterista III	C	excel file	
		Chromium III	S	<0.03 <0.5	mg/l
		Beryllium, dissolved	I,R		ug/l
		Vanadium, dissolved	I,R	<0.5	ug/l
		PRO Water (C5-C12) by GC-FID	I,R	<10	ug/l
		VOC + TIC (HS, GEO76)	S	See attached PDF file	ug/l
		Barium, dissolved	I,R	45	ug/l
		Boron, dissolved	I,R	16	ug/l
		Selenium, dissolved	I,R	1	ug/l
		Zinc, dissolved	I,R	<5	ug/l
		Arsenic, dissolved	I,R	2	ug/l
		Mercury, dissolved	I,R	< 0.05	ug/l
		Nickel, dissolved	Í,R	1	ug/l
		Cadmium, dissolved	I,R	<0.5	ug/l
		Lead, dissolved	I,R	<0.5	ug/l
		Chromium, dissolved	I,R	<0.5	ug/l
		Chromium, total	I,R	<0.6	ug/l
		Copper, dissolved	I,R	<1	ug/l
		SVOC TICs (GE094)	S	See attached PDF file	ug/l
		Chromium hexavalent in water	S	<0.003	mg/l
		pH			
			I,R	7.3	pH Units
		Conductivity @ 25 C	I,R	435	uS/cm
		Suspended Solids	I,R	<2	mg/l
		Turbidity	I,R	1.5	N.T.U.

Page 8 of 12 of Report 510639

Complete Laboratory Solutions, Ros Muc, Connemara, Co. Galway

Silt Pond B Monettia	Turbidity	I,R	1.3	N.T.U.
31-01-23	Suspended Solids	I,R	<2	mg/l
	Conductivity @ 25 C	I,R	421	uS/cm
AVAOLEH III III II	pH	I,R	7.3	pH
0.000 (0.0		(2)		Units
92662.400974.00111111111111111111	Chromium hexavalent in water	S	< 0.003	mg/l
	SVOC TICs (GEO94)	S	See attached PDF file	ug/l
	Copper, dissolved	I,R	<1	ug/l
	Chromium, total	I,R	<0.6	ug/l
	Chromium, dissolved	I,R	<0.5	ug/l
	Lead, dissolved	I,R	<0.5	ug/l
	Cadmium, dissolved	I,R	<0.5	ug/l
	Nickel, dissolved	I,R	1	ug/l
	Mercury, dissolved	I,R	<0.05	ug/l
	Arsenic, dissolved	I,R	2	ug/l
	Zinc, dissolved	I,R	<5	ug/l
	Selenium, dissolved	I,R	<0.5	ug/l
	Boron, dissolved	I,R	15	ug/l
	Barium, dissolved	I,R	45	ug/l
	VOC + TIC (HS, GEO76)	S	See attached PDF file	ug/l
	PRO Water (C5-C12) by GC-FID	I,R	<10	ug/l
	Vanadium, dissolved	I,R	<0.5	ug/l
	Beryllium, dissolved	I,R	<0.5	ug/l
	Chromium III	S	<0.03	mg/l
	SVOCs (W) (GEO94)	S	Please see attached excel file	ug/l
	Chromium, total (in water)	S	<0.002	mg/l
	Extractable Hydrocarbons Water (C8-C40, Diesel Range and Lube Oil) by GC-FID	I,R	44 **Unknown Pattern	ug/l
	PAH 16 (non-DW) GEO81	S	Please see attached excel file	ug/l
	COD(settled)	I,R	42	mg/l
	VOC suite - (non-DW)	S	Please see attached excel file	ug/l

Page 9 of 12 of Report 510639

Complete Laboratory Solutions, Ros Muc, Connemara, Co. Galway

1576805	Silt Pond C Monettia 31-01-23	VOC suite - (non-DW)	S	Please see attached excel file	ug/l
		COD(settled)	I,R	39	mg/l
		PAH 16 (non-DW) GEO81	S	Please see attached excel file	ug/l
		Extractable Hydrocarbons Water (C8-C40, Diesel Range and Lube Oil) by GC-FID	I,R	24 **Unknown Pattern	ug/l
		Chromium, total (in water)	S	<0.002	mg/l
100		SVOCs (W) (GEO94)	S	Please see attached excel file	ug/l
		Chromium III	S	<0.03	mg/l
		Beryllium, dissolved	I,R	<0.5	ug/l
		Vanadium, dissolved	I,R	<0.5	ug/l
		PRO Water (C5-C12) by GC-FID	I,R	<10	ug/l
		VOC + TIC (HS, GEO76)	S	See attached PDF file	ug/l
		Barium, dissolved	I,R	160	ug/l
		Boron, dissolved	I,R	18	ug/l
		Selenium, dissolved	I,R	1	ug/l
		Zinc, dissolved	I,R	<5	ug/l
		Arsenic, dissolved	I,R	1	ug/l
		Mercury, dissolved	I,R	<0.05	ug/l
		Nickel, dissolved	I,R	2	ug/l
		Cadmium, dissolved	I,R	<0.5	ug/l
		Lead, dissolved	I,R	<0.5	ug/l
		Chromium, dissolved	I,R	<0.5	ug/l
		Chromium, total	I,R	<0.6	ug/l
		Copper, dissolved	I,R	<1	ug/l
		SVOC TICs (GEO94)	S	See attached PDF file	ug/l
		Chromium hexavalent in water	S	<0.003	mg/l
		pH	I,R	7.5	pH Units
		Conductivity @ 25 C	I,R	667	uS/cm
		Suspended Solids	I,R	4	mg/l
		Turbidity	I,R	1.5	N.T.U.

Approved by:

Amn Maria Nea

AnnMarie Nee Environmental Services Administrator

See below for test specifications and accreditation status.

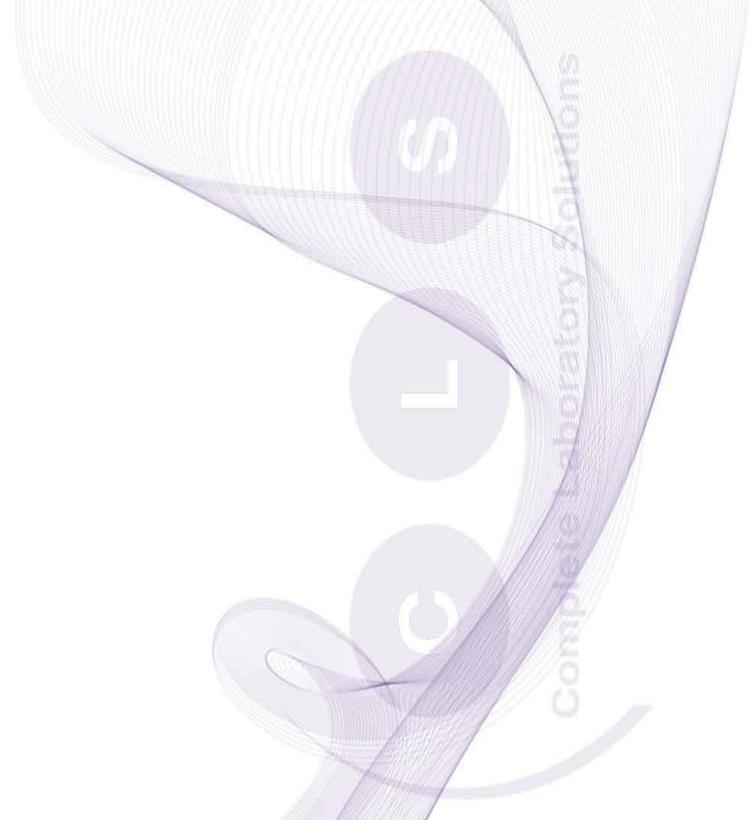
This report only relates to items tested and shall not be reproduced but in full with the permission of CLS. est. is an estimated count.

CLS will test food, water and swabs samples within 24 hours of receipt.

Where samples have been taken by the Client, results apply to the samples as received.

Page 10 of 12 of Report 510639

Complete Laboratory Solutions, Ros Muc, Connemara, Co. Galway


In-House Test	Specification	Expanded Measurement of Uncertainty	17025	GMP/FDA*	ISO**
Suspended Solids	CLS 13	+/- 20.84 %	Yes	No	Yes
Turbidity	CLS 30	+/- 22.03 %	Yes	No	Yes
pH	CLS 26	+/- 0.133 pH units	Yes	No	Yes
Conductivity @ 25 C	CLS 67	+/- 4.92 %	Yes	No	Yes
Chromium, total	ICP-MS CLS129	+/- 8.38 %	Yes	No	Yes
Copper, dissolved	ICP-MS CLS 129	+/- 11.28 %	Yes	No	Yes
Lead, dissolved	ICP-MS CLS129	+/-20@100ug/l	Yes	No	Yes
Chromium, dissolved	ICP-MS CLS 129	+/- 8.38 %	Yes	No	Yes
Nickel, dissolved	ICP-MS CLS129	+/- 7.91 %	Yes	No	Yes
Cadmium, dissolved	ICP-MS CLS129	+/- 10.42 %	Yes	No	Yes
Arsenic, dissolved	ICP-MS CLS129	+/- 9.34 %	Yes	No	Yes
Mercury, dissolved	ICP-MS CLS 129	+/- 27.72 %	Yes	No	Yes
Selenium, dissolved	ICP-MS CLS129	+/-0.9@5ug/l	Yes	No	Yes
Zinc, dissolved	ICP-MS CLS 129	+/- 9.38 %	Yes	No	Yes
Barium, dissolved	ICP-MS CLS129	+/-33@250ug/l	Yes	No	Yes
Boron, dissolved	ICP-MS CLS129	+/-15@200ug/l	Yes	No	Yes
PRO Water (C5-C12) by GC-FID	CLS 148	+/- 29.7ug/l @ 200ug/l	Yes	No	Yes
Beryllium, dissolved	ICP-MS CLS129	+/- 11.67 %	Yes	No	Yes
Vanadium, dissolved	ICP-MS CLS 129	+/- 11.72 %	Yes	No	Yes
Extractable Hydrocarbons Water (C8-C40, Diesel Range and Lube Oil) by GC-FID	CLS 147	+/- 26.37@200ug/l	Yes	No	Yes
COD(settled)	CLS 52	+/- 4.48 %	Yes	No	Yes

^{*}Analysis carried out in a GMP approved, FDA inspected facility (MedPharma site only).

**Laboratory Analysis, Sampling, Food Safety Monitoring and Analysts on Contract are all ISO 9001 certified.

Lab No	Sample ID	Sample Condition on Receipt	Sampling Date
1576789	SW-101 D/S Monettia 31-01-23	Good condition	31/01/2023
1576797	SW-102 Monettia Outfall 31-01-23	Good condition	31/01/2023
1576798	SW-103 U/S Monettia 31-01-23	Good condition	31/01/2023
1576799	SW-201 Monettia boundry drain 31-01-23	Good condition	31/01/2023
1576800	SW-25 31-01-23	Good condition	31/01/2023
1576801	Top Drain Monettia 31-01-23	Good condition	31/01/2023
1576802	Middle Drain Monettia 31-01-23	Good condition	31/01/2023
1576803	Silt Pond A Monettia 31-01-23	Good condition	31/01/2023
1576804	Silt Pond B Monettia 31-01-23	Good condition	31/01/2023
1576805	Silt Pond C Monettia 31-01-23	Good condition	31/01/2023

Page 12 of 12 of Report 510639

Complete Laboratory Solutions, Ros Muc, Connemara, Co. Galway

CERTIFICATE OF ANALYSIS

Client : Stephen Stapleton, Compliance Officer

Bord na Móna (Derrinlough, Castletown, Blackwater

Blackwater Works, Blackwater, Shannonbridge, Athlone,

Co. Westmeath

Report No. : 517917

Date of Receipt : 18/04/2023

Start Date of Analysis : 18/04/2023

Date of Report : 08/05/2023

Order Number : 3118810

Sample taken by : Client

Lab No	Sample Description	Test	Ref.	Result	Units
1604331	SW-102 Monettia	Suspended Solids	I,R	<2	mg/l
	Outfall	Turbidity	I,R	2.4	N.T.U.
		pH	I,R	7.9	pH Units
		Conductivity @ 25 C	I,R	526	uS/cm
		SVOC TICs (GEO94)	S	Please see attached excel file	ug/l
		Chromium hexavalent in water	S	< 0.003	mg/l
		Chromium, total	I,R	<0.6	ug/l
		Copper, dissolved	I,R	<1	ug/l
		Lead, dissolved	I,R	<0.5	ug/l
		Chromium, dissolved	I,R	<0.5	ug/l
		Nickel, dissolved	I,R	100	ug/l
		Cadmium, dissolved	I,R	<0.5	ug/l
		Arsenic, dissolved	I,R	<0.5	ug/l
		Mercury, dissolved	I,R	<0.05	ug/l
		Selenium, dissolved	I,R	<0.5	ug/l
		Zinc, dissolved	I,R	<5	ug/l
		Barium, dissolved	I,R	165	ug/l
		Boron, dissolved	I,R	14	ug/l
		PRO Water (C5-C12) by GC-FID	I,R	<10	ug/l
		VOC + TIC (HS, GEO76)	S	Please see attached excel file	ug/l
		Beryllium, dissolved	I,R	<0.5	ug/l
		Vanadium, dissolved	I,R	<0.5	ug/l
		SVOCs (W) (GE094)	S	Please see attached excel file	ug/l
		Chromium III	S	<0.03	mg/l
		Extractable Hydrocarbons Water (C8-C40, Diesel Range and Lube Oil) by GC-FID	I,R	78 **Unknown Pattern	ug/l
		Chromium, total (in water)	S	<0.002	mg/l
		COD(settled)	I,R	38	mg/l
		PAH 16 (non-DW) GEO81	S	Please see attached excel file	ug/l
		VOC suite - (non-DW)	S	Please see attached excel file	ug/l

Complete Laboratory Solutions, Ros Muc, Connemara, Co. Galway Approved by:

Ann Marie Nee

AnnMarie Nee Environmental

Services Administrator

See below for test specifications and accreditation status.

This report only relates to items tested and shall not be reproduced but in full with the permission of CLS. est. is an estimated count.

CLS will test food, water and swabs samples within 24 hours of receipt.

Where samples have been taken by the Client, results apply to the samples as received.

Page 2 of 3 of Report 517917

Complete Laboratory Solutions, Ros Muc, Connemara, Co. Galway Complete Laboratory Solutions (Medpharma), Unit 3A & Unit 8, Small Business Park, Tuam Road, Galway.

Symbol Reference - I:17025 accredited; S:Subcontracted; R:Analysis carried out in Ros Muc; M:Analysis carried out in MedPharma; F:Field test; O:Tested outside hold time.

In-House Test	Specification	Expanded Measurement of Uncertainty	17025	GMP/FDA*	ISO**
Suspended Solids	CLS 13	+/- 20.84 %	Yes	No	Yes
Turbidity	CLS 30	+/- 22.03 %	Yes	No	Yes
pH	CLS 26	+/- 0.133 pH units	Yes	No	Yes
Conductivity @ 25 C	CLS 67	+/- 4.92 %	Yes	No	Yes
Chromium, total	ICP-MS CLS129	+/- 8.38 %	Yes	No	Yes
Copper, dissolved	ICP-MS CLS 129	+/- 11.28 %	Yes	No	Yes
Lead, dissolved	ICP-MS CLS129	+/-20@100ug/l	Yes	No	Yes
Chromium, dissolved	ICP-MS CLS 129	+/- 8.38 %	Yes	No	Yes
Nickel, dissolved	ICP-MS CLS129	+/- 7.91 %	Yes	No	Yes
Cadmium, dissolved	ICP-MS CLS129	+/- 10.42 %	Yes	No	Yes
Arsenic, dissolved	ICP-MS CLS129	+/- 9.34 %	Yes	No	Yes
Mercury, dissolved	ICP-MS CLS 129	+/- 27.72 %	Yes	No	Yes
Selenium, dissolved	ICP-MS CLS129	+/-0.9@5ug/l	Yes	No	Yes
Zinc, dissolved	ICP-MS CLS 129	+/- 9.38 %	Yes	No	Yes
Barium, dissolved	ICP-MS CLS129	+/-33@250ug/l	Yes	No	Yes
Boron, dissolved	ICP-MS CLS129	+/-15@200ug/l	Yes	No	Yes
PRO Water (C5-C12) by GC-FID	CLS 148	+/- 29.7ug/l @ 200ug/l	Yes	No	Yes
Beryllium, dissolved	ICP-MS CLS129	+/- 11.67 %	Yes	No	Yes
Vanadium, dissolved	ICP-MS CLS 129	+/- 11.72 %	Yes	No	Yes
Extractable Hydrocarbons Water (C8-C40, Diesel Range and Lube Oil) by GC-FID	CLS 147	+/- 26.37@200ug/l	Yes	No	Yes
COD(settled)	CLS 52	+/- 4.48 %	Yes	No	Yes

^{*}Analysis carried out in a GMP approved, FDA inspected facility (MedPharma site only).

**Laboratory Analysis, Sampling, Food Safety Monitoring and Analysts on Contract are all ISO 9001 certified.

Lab No	Sample ID	Sample Condition on Receipt	Sampling Date
1604331	SW-102 Monettia Outfall	Good condition	18/04/2023

Complete Laboratory Solutions, Ros Muc, Connemara, Co. Galway

CERTIFICATE OF ANALYSIS

Client : Stephen Stapleton, Compliance Officer

Bord na Móna (Derrinlough, Castletown, Blackwater

Blackwater Works, Blackwater, Shannonbridge, Athlone,

Co. Westmeath

Report No.
Date of Receipt
Start Date of Analysis

Date of Report

Order Number

517918 18/04/2023 18/04/2023 08/05/2023

3118810 ** LS18, Mountdillon, SW118 Blackwater 7 d

Sample taken by : Client

Lab No	Sample Description	Test	Ref.	Result	Units
1604332	SW-103 U/S	Suspended Solids	I,R	<2	mg/l
	Monettia	Turbidity	I,R	1.3	N.T.U.
		рН	I,R	8.2	pH Units
		Conductivity @ 25 C	I,R	265	uS/cm
		SVOC TICs (GE094)	S	Please see attached excel file	ug/l
		Chromium hexavalent in water	S	<0.003	mg/l
		Chromium, total	I,R	<0.6	ug/l
		Copper, dissolved	I,R	<1	ug/l
		Lead, dissolved	I,R	<0.5	ug/l
		Chromium, dissolved	I,R	<0.5	ug/l
		Nickel, dissolved	I,R	<0.5	ug/l
		Cadmium, dissolved	I,R	<0.5	ug/l
		Arsenic, dissolved	I,R	<0.5	ug/l
		Mercury, dissolved	I,R	<0.05	ug/l
		Selenium, dissolved	I,R	<0.5	ug/l
		Zinc, dissolved	I,R	<5	ug/l
		Barium, dissolved	I,R	187	ug/l
		Boron, dissolved	I,R	<10	ug/l
		PRO Water (C5-C12) by GC-FID	I,R	<10	ug/l
		VOC + TIC (HS, GEO76)	S	Please see attached excel file	ug/l
		Beryllium, dissolved	I,R	<0.5	ug/l
		Vanadium, dissolved	I,R	<0.5	ug/l
		SVOCs (W) (GEO94)	S	Please see attached excel file	ug/l
		Chromium III	/ S	<0.03	mg/l
		Extractable Hydrocarbons Water (C8-C40, Diesel Range and Lube Oil) by GC-FID	I,R	31 **Unknown Pattern	ug/l
		Chromium, total (in water)	S	<0.002	mg/l
		COD(settled)	I,R	28	mg/l
		PAH 16 (non-DW) GEO81	S	Please see attached excel file	ug/l
		VOC suite - (non-DW)	S	Please see attached excel file	ug/l

Complete Laboratory Solutions, Ros Muc, Connemara, Co. Galway Complete Laboratory Solutions (Medpharma), Unit 3A & Unit 8,

Ann Moris Nee

Small Business Park, Tuam Road, Galway.

Approved by:

Symbol Reference - I:17025 accredited; S:Subcontracted; R:Analysis carried out in Ros Muc; M:Analysis carried out in MedPharma; F:Field test; O:Tested outside hold time.

AnnMarie Nee Environmental Services Administrator

See below for test specifications and accreditation status.

This report only relates to items tested and shall not be reproduced but in full with the permission of CLS. est. is an estimated count.

CLS will test food, water and swabs samples within 24 hours of receipt.

Where samples have been taken by the Client, results apply to the samples as received.

Page 2 of 3 of Report 517918

Complete Laboratory Solutions, Ros Muc, Connemara, Co. Galway

In-House Test	Specification	Expanded Measurement of Uncertainty	17025	GMP/FDA*	ISO**
Suspended Solids	CLS 13	+/- 20.84 %	Yes	No	Yes
Turbidity	CLS 30	+/- 22.03 %	Yes	No	Yes
pH	CLS 26	+/- 0.133 pH units	Yes	No	Yes
Conductivity @ 25 C	CLS 67	+/- 4.92 %	Yes	No	Yes
Chromium, total	ICP-MS CLS129	+/- 8.38 %	Yes	No	Yes
Copper, dissolved	ICP-MS CLS 129	+/- 11.28 %	Yes	No	Yes
Lead, dissolved	ICP-MS CLS129	+/-20@100ug/l	Yes	No	Yes
Chromium, dissolved	ICP-MS CLS 129	+/- 8.38 %	Yes	No	Yes
Nickel, dissolved	ICP-MS CLS129	+/- 7.91 %	Yes	No	Yes
Cadmium, dissolved	ICP-MS CLS129	+/- 10.42 %	Yes	No	Yes
Arsenic, dissolved	ICP-MS CLS129	+/- 9.34 %	Yes	No	Yes
Mercury, dissolved	ICP-MS CLS 129	+/- 27.72 %	Yes	No	Yes
Selenium, dissolved	ICP-MS CLS129	+/-0.9@5ug/l	Yes	No	Yes
Zinc, dissolved	ICP-MS CLS 129	+/- 9.38 %	Yes	No	Yes
Barium, dissolved	ICP-MS CLS129	+/-33@250ug/l	Yes	No	Yes
Boron, dissolved	ICP-MS CLS129	+/-15@200ug/l	Yes	No	Yes
PRO Water (C5-C12) by GC-FID	CLS 148	+/- 29.7ug/l @ 200ug/l	Yes	No	Yes
Beryllium, dissolved	ICP-MS CLS129	+/- 11.67 %	Yes	No	Yes
Vanadium, dissolved	ICP-MS CLS 129	+/- 11.72 %	Yes	No	Yes
Extractable Hydrocarbons Water (C8-C40, Diesel Range and Lube Oil) by GC-FID		+/- 26.37@200ug/l	Yes	No	Yes
COD(settled)	CLS 52	+/- 4.48 %	Yes	No /	Yes

^{*}Analysis carried out in a GMP approved, FDA inspected facility (MedPharma site only).

**Laboratory Analysis, Sampling, Food Safety Monitoring and Analysts on Contract are all ISO 9001 certified.

Lab No	Sample ID	Sample Condition on Receipt	Sampling Date
1604332	SW-103 U/S Monettia	Good condition	18/04/2023

Complete Laboratory Solutions, Ros Muc, Connemara, Co. Galway

CERTIFICATE OF ANALYSIS

Client : Stephen Stapleton, Compliance Officer

Bord na Móna (Derrinlough, Castletown, Blackwater

Blackwater Works, Blackwater, Shannonbridge, Athlone,

Co. Westmeath

Report No. : 517919

Date of Receipt : 18/04/2023

Start Date of Analysis : 18/04/2023

Date of Report : 08/05/2023

Order Number : 3118810 **

Sample taken by : Client

Lab No	Sample Description	Test	Ref.	Result	Units
1604333	SW-201 Monettia	Suspended Solids	I,R	<2	mg/l
	boundary drain	Turbidity	I,R	2.9	N.T.U.
		pH	I,R	7.9	pН
					Units
		Conductivity @ 25 C	I,R	591	uS/cm
		SVOC TICs (GE094)	S	Please see attached excel file	ug/l
		Chromium hexavalent in water	S	<0.003	mg/l
		Chromium, total	I,R	<0.6	ug/l
		Copper, dissolved	I,R	<1	ug/l
		Lead, dissolved	I,R	<0.5	ug/l
		Chromium, dissolved	I,R	<0.5	ug/l
		Nickel, dissolved	I,R	2	ug/l
		Cadmium, dissolved	I,R	<0.5	ug/l
		Arsenic, dissolved	I,R	1	ug/l
		Mercury, dissolved	I,R	<0.05	ug/l
		Selenium, dissolved	I,R	316 MU W 30000 W 30	ug/l
		Zinc, dissolved	I,R	<5	ug/l
		Barium, dissolved	I,R	211	ug/l
		Boron, dissolved	I,R	20	ug/l
		PRO Water (C5-C12) by GC-FID	I,R	<10	ug/l
		VOC + TIC (HS, GEO76)	S	Please see attached excel file	ug/l
		Beryllium, dissolved	I,R	<0.5	ug/l
		Vanadium, dissolved	I,R	<0.5	ug/l
		SVOCs (W) (GEO94)	S	Please see attached excel file	ug/l
		Chromium III	S	< 0.03	mg/l
		Extractable Hydrocarbons Water (C8-C40, Diesel Range and Lube Oil) by GC-FID	I,R	63 **Unknown Pattern	ug/l
		Chromium, total (in water)	S	<0.002	mg/l
		COD(settled)	I,R	63	mg/l
	/	PAH 16 (non-DW) GEO81	S	Please see attached excel file	ug/l
	(VOC suite - (non-DW)	S	Please see attached excel file	ug/l

Page 1 of 3 of Report 517919

Approved by:

AnnMarie Nee
Environmental

Complete Laboratory Solutions, Ros Muc, Connemara, Co. Galway

Services Administrator

See below for test specifications and accreditation status.

This report only relates to items tested and shall not be reproduced but in full with the permission of CLS. est. is an estimated count.

CLS will test food, water and swabs samples within 24 hours of receipt.

Where samples have been taken by the Client, results apply to the samples as received.

Page 2 of 3 of Report 517919

Complete Laboratory Solutions, Ros Muc, Connemara, Co. Galway Complete Laboratory Solutions (Medpharma), Unit 3A & Unit 8, Small Business Park, Tuam Road, Galway.

Symbol Reference - I:17025 accredited; S:Subcontracted; R:Analysis carried out in Ros Muc; M:Analysis carried out in MedPharma; F:Field test; O:Tested outside hold time.

In-House Test	Specification	Expanded Measurement of Uncertainty	17025	GMP/FDA*	ISO**
Suspended Solids	CLS 13	+/- 20.84 %	Yes	No	Yes
Turbidity	CLS 30	+/- 22.03 %	Yes	No	Yes
pH	CLS 26	+/- 0.133 pH units	Yes	No	Yes
Conductivity @ 25 C	CLS 67	+/- 4.92 %	Yes	No	Yes
Chromium, total	ICP-MS CLS129	+/- 8.38 %	Yes	No	Yes
Copper, dissolved	ICP-MS CLS 129	+/- 11.28 %	Yes	No	Yes
Lead, dissolved	ICP-MS CLS129	+/-20@100ug/l	Yes	No	Yes
Chromium, dissolved	ICP-MS CLS 129	+/- 8.38 %	Yes	No	Yes
Nickel, dissolved	ICP-MS CLS129	+/- 7.91 %	Yes	No	Yes
Cadmium, dissolved	ICP-MS CLS129	+/- 10.42 %	Yes	No	Yes
Arsenic, dissolved	ICP-MS CLS129	+/- 9.34 %	Yes	No	Yes
Mercury, dissolved	ICP-MS CLS 129	+/- 27.72 %	Yes	No	Yes
Selenium, dissolved	ICP-MS CLS129	+/-0.9@5ug/l	Yes	No	Yes
Zinc, dissolved	ICP-MS CLS 129	+/- 9.38 %	Yes	No	Yes
Barium, dissolved	ICP-MS CLS129	+/-33@250ug/l	Yes	No	Yes
Boron, dissolved	ICP-MS CLS129	+/-15@200ug/l	Yes	No	Yes
PRO Water (C5-C12) by GC-FID	CLS 148	+/- 29.7ug/l @ 200ug/l	Yes	No	Yes
Beryllium, dissolved	ICP-MS CLS129	+/- 11.67 %	Yes	No	Yes
Vanadium, dissolved	ICP-MS CLS 129	+/- 11.72 %	Yes	No	Yes
Extractable Hydrocarbons Water (C8-C40, Diesel Range and Lube Oil) by GC-FID	CLS 147	+/- 26.37@200ug/l	Yes	No	Yes
COD(settled)	CLS 52	+/- 4.48 %	Yes	No /	Yes

^{*}Analysis carried out in a GMP approved, FDA inspected facility (MedPharma site only).

**Laboratory Analysis, Sampling, Food Safety Monitoring and Analysts on Contract are all ISO 9001 certified.

Lab No	Sample ID	Sample Condition on Receipt	Sampling Date
1604333	SW-201 Monettia boundary drain	Good condition	18/04/2023

Complete Laboratory Solutions, Ros Muc, Connemara, Co. Galway

CERTIFICATE OF ANALYSIS

Client : Stephen Stapleton, Compliance Officer

Bord na Móna (Derrinlough, Castletown, Blackwater

Blackwater Works, Blackwater, Shannonbridge, Athlone,

Co. Westmeath

Report No. : 521452
Date of Receipt : 23/05/2023
Start Date of Analysis : 23/05/2023
Date of Report : 29/05/2023
Order Number : 3118810 **
Sample taken by : Client

Lab No	Sample Description	Test	Ref.	Result	Units
1616760	SW-101 D/S Monettia	Suspended Solids	I,R	6	mg/l
	Committee of the second	Turbidity	I,R	3.4	N.T.U.
		pH	I,R	7.9	pH Units
	4000000	Conductivity @ 25 C	I,R	487	uS/cm
1616762	SW-102 Monettia Outfall	Turbidity	I,R	4.0	N.T.U.
		Conductivity @ 25 C	I,R	552	uS/cm
		pH	I,R	7.9	pH Units
		Suspended Solids	I,R	<2	mg/l
1616765	SW-103 U/S Monettia	Suspended Solids	I,R	<2	mg/l
	·	pH	I,R	8.1	pH Units
		Conductivity @ 25 C	I,R	252	uS/cm
		Turbidity	I,R	1.6	N.T.U.
1616766	SW-201 Monettia boundary drain	pH	I,R	7.8	pH Units
	·	Conductivity @ 25 C	I,R	760	/uS/cm
		Suspended Solids	I,R	3	mg/l
		Turbidity	I,R	3.3	N.T.U.

Approved by:

AnnMarie Nee
Environmental

Environmental Services Administrator

See below for test specifications and accreditation status.

This report only relates to items tested and shall not be reproduced but in full with the permission of CLS. est. is an estimated count.

CLS will test food, water and swabs samples within 24 hours of receipt.

Where samples have been taken by the Client, results apply to the samples as received.

Page 1 of 2 of Report 521452

Complete Laboratory Solutions, Ros Muc, Connemara, Co. Galway

In-House Test	Specification	Expanded Measurement of Uncertainty	17025	GMP/FDA*	ISO**
Suspended Solids	CLS 13	+/- 20.84 %	Yes	No	Yes
Turbidity	CLS 30	+/- 22.03 %	Yes	No	Yes
pH	CLS 26	+/- 0.133 pH units	Yes	No	Yes
Conductivity @ 25 C	CLS 67	+/- 4.92 %	Yes	No	Yes

^{*}Analysis carried out in a GMP approved, FDA inspected facility (MedPharma site only).
**Laboratory Analysis, Sampling, Food Safety Monitoring and Analysts on Contract are all ISO 9001 certified.

Lab No	Sample ID	Sample Condition on Receipt	Sampling Date		
1616760	SW-101 D/S Monettia	Good condition	23/05/2023		
1616762	SW-102 Monettia Outfall	Good condition	23/05/2023		
1616765	SW-103 U/S Monettia	Good condition	23/05/2023		
1616766	SW-201 Monettia boundary drain	Good condition	23/05/2023		

CERTIFICATE OF ANALYSIS

Client : Stephen Stapleton, Compliance Officer

Bord na Móna (Derrinlough, Castletown, Blackwater

Blackwater Works, Blackwater, Shannonbridge, Athlone,

Co. Westmeath

Report No. : 525275

Date of Receipt : 29/06/2023

Start Date of Analysis : 29/06/2023

Date of Report : 06/07/2023

Order Number : 3120058

Sample taken by : Client

Lab No	Sample Description	Test	Ref.	Result	Units
1630305	SW-101 D/S Monettia	Suspended Solids	I,R	<2	mg/l
	The state of the s	Turbidity	I,R	2.8	N.T.U.
		pH	I,R	7.9	pH Units
	A STATE OF THE PARTY OF THE PAR	Conductivity @ 25 C	I,R	417	uS/cm
1630306	SW-102 Monettia Discharge Point	Turbidity	I,R	3.8	N.T.U.
		Conductivity @ 25 C	I,R	451	uS/cm
		pH	I,R	8.0	pH Units
		Suspended Solids	I,R	3	mg/l
1630307	SW-103 U/S Monettia	Suspended Solids	I,R	3	mg/l
		рН	I,R	8.1	pH Units
		Conductivity @ 25 C	I,R	212	uS/cm
		Turbidity	I,R	2.8	N.T.U.
1630308	SW-201 Monettia boundary drain	pH	I,R	7.8	pH Units
		Conductivity @ 25 C	I,R	702	/uS/cm
		Suspended Solids	I,R	2	mg/l
		Turbidity	I,R	2.8	N.T.U.

Approved by:

Ann Marie Nee

Environmental
Services Administrator

See below for test specifications and accreditation status.

This report only relates to items tested and shall not be reproduced but in full with the permission of CLS. est. is an estimated count.

CLS will test food, water and swabs samples within 24 hours of receipt.

Where samples have been taken by the Client, results apply to the samples as received.

Page 1 of 2 of Report 525275

Complete Laboratory Solutions, Ros Muc, Connemara, Co. Galway

In-House Test	Specification	Expanded Measurement of Uncertainty	17025	GMP/FDA*	ISO**
Suspended Solids	CLS 13	+/- 20.84 %	Yes	No	Yes
Turbidity	CLS 30	+/- 22.03 %	Yes	No	Yes
pH	CLS 26	+/- 0.133 pH units	Yes	No	Yes
Conductivity @ 25 C	CLS 67	+/- 4.92 %	Yes	No	Yes

 $^{^*}$ Analysis carried out in a GMP approved, FDA inspected facility (MedPharma site only).

^{**}Laboratory Analysis, Sampling, Food Safety Monitoring and Analysts on Contract are all ISO 9001 certified.

Lab No	Sample ID	Sample Condition on Receipt	Sampling Date
1630305	SW-101 D/S Monettia	Good condition	29/06/2023
1630306	SW-102 Monettia Discharge Point	Good condition	29/06/2023
1630307	SW-103 U/S Monettia	Good condition	29/06/2023
1630308	SW-201 Monettia boundary drain	Good condition	29/06/2023

Page 2 of 2 of Report 525275

Complete Laboratory Solutions, Ros Muc, Connemara, Co. Galway

Sample Name

Acq. Method File Acq. Date-Time **Instrument Name** SW-101 Monettia D/S

SVOC_PJS_TestB 28/04/2023 16:01:53 MSD-V

Method GEO94 Semi Volatile Organic Compounds

D:\MassHunter\GCMS\2\methods\

Acq. Method Path Acq. Operator Dil.

KB/PJS/RM

1604330

Note: Estimated concentration assumes a response equivalent to the internal standard response for d14-p-Terphenyl. Units are ug/L SVOC-TICs is not accredited to ISO 17025

Sample Name

Acq. Method File Acq. Date-Time Instrument Name SW-102 Monettia Outfall

SVOC_PJS_TestB 28/04/2023 16:29:52 MSD-V Method GEO94 Semi Volatile Organic Compounds

Acq. Method Path Acq. Operator Dil. D:\MassHunter\GCMS\2\methods\

KB/PJS/RM

1604331

Note: Estimated concentration assumes a response equivalent to the internal standard response for d14-p-Terphenyl. Units are ug/L SVOC-TICs is not accredited to ISO 17025

Sample Name Acq. Method File

Acq. Date-Time

Instrument Name

SW-103 U/S Monettia

 SVOC_PJS_TestB
 Acq.

 28/04/2023 18:21:13
 Acq.

 MSD-V
 Dil.

Method GEO94 Semi Volatile Organic Compounds

 Acq. Method Path
 D:\MassHunter\GCMS\2\methods\

 Acq. Operator
 KB/PJS/RM

and oberator Ref. 35/1

1604332

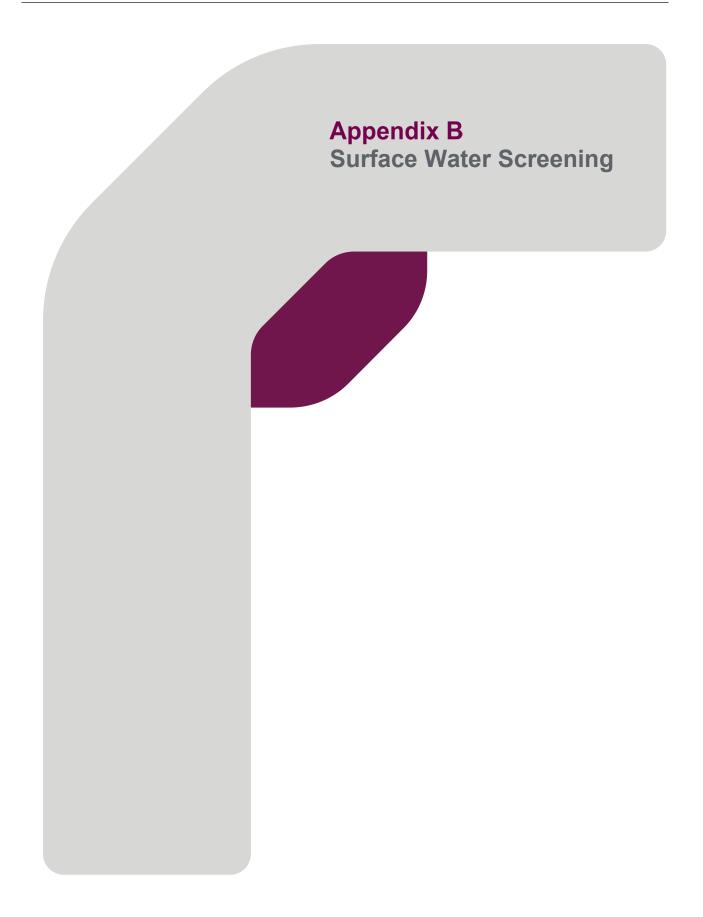
Note: Estimated concentration assumes a response equivalent to the internal standard response for d14-p-Terphenyl. Units are ug/L SVOC-TICs is not accredited to ISO 17025

Sample Name

SW-201 Monettia boundary drain

Method GEO94 Semi Volatile Organic Compounds

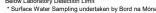
Acq. Method File Acq. Date-Time Instrument Name SVOC_PJS_TestB 28/04/2023 18:49:00 MSD-V


 Acq. Method Path
 D:\MassHunter\GCMS\2\methods\

 Acq. Operator
 KB/PJS/RM

Dil. 5

1604333


Note: Estimated concentration assumes a response equivalent to the internal standard response for d14-p-Terphenyl. Units are ug/L SVOC-TICs is not accredited to ISO 17025

SURFACE WATER QUALITY RESULTS																										
Monitoring location			SW AA EQS			Gorteen Bridge		Upstream				Downstream*			Downstream*		Outfall		Boundary Drain					Downstream*	Outfall	Upstream* Boundary
Date Sample ID	Units	LOD	(2019) Inland	17/02/2022 SW101	01/03/2022 SW201	13/04/2022 SW101	13/04/2022 SW102	13/04/2022 SW103	13/04/2022 SW201	29/11/2022 SW103	29/11/2022 SW201	29/11/2022 SW101	15/12/2022 SW103	15/12/2022 SW201	15/12/2022 SW101	31/01/2023 SW101	31/01/2023 SW102	31/01/2023 SW103	31/01/2023 SW201	22/02/2023 SW101		22/02/2023 SW103	22/02/2023 SW201	18/04/2023 SW101	18/04/2023 SW102	18/04/2023 18/04/2 SW103 SW20
Sample type			Surface Waters	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab 1576789	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab Grab
Element Report Reference				22/2826	22/3378	22/6185	22/6185	22/6185	22/6185	505912	505912	505912	1564141	1564140	1564142	1576769	1576797	1576798	1576799	1586048	1586049	1586050	1586056	1604331	1604331	1604331 16043
Dissolved Arsenic Dissolved Barium	ug/l ug/l	<2.5 <3	-	<2.5 96	<2.5 66	<2.5 162	<2.5 182	<2.5 158	<2.5 191	<0.5 143	1 82	131	<0.5 178	171	1 161	1 138	1 141	<0.5 145	1 153	<0.5 157	<0.5 149	<0.5 152	1 194	<0.5 199	<0.5 165	<0.5 1 187 211
Dissolved Beryllium	ug/l	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <0.5
Dissolved Boron Dissolved Cadmium	ug/l ug/l	<12 <0.5	0.08	18 <0.5	<12 <0.5	<12 <0.5	15 <0.5	<12 <0.5	17 <0.5	<10 <0.5	15 <0.5	13 <0.5	<10 <0.5	20 <0.5	14 <0.5	<0.5	11 <0.5	<10 <0.5	16 <0.5	11 <0.5	11 <0.5	<10 <0.5	18 <0.5	15 <0.5	14 <0.5	<10 20 <0.5 <0.5
Total Dissolved Chromium	ug/l	<1.5	-	<1.5 <7	<1.5 <7	<1.5 <7	<1.5 <7	<1.5 <7	<1.5 <7	<0.5 <1	<0.5	<0.5 <1	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	1 <1	<0.6 <1	<0.6 <1	<0.5	<0.5 <1	<0.5 <0.5 <1 <1
Dissolved Copper Dissolved Lead	ug/l ug/l	<7 <5	7.2	<7 <5	<5	<5	<7 <5	<5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <0.5
Dissolved Mercury Dissolved Nickel	ug/l	<1 <2	0.07 20	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2	<0.05	<0.05	<0.05	<0.05 <0.5	<0.05	<0.05	<0.05	<0.05	<0.05 <0.5	<0.05	<0.05	<0.05	<0.05 <0.5	<0.05	<0.05	<0.05	<0.05 <0.05 <0.5 2
Dissolved Nickel Dissolved Selenium	ug/l ug/l		-	<3	<3	<3	<3	<3	<3	<0.5	<0.5	1	<0.5	1	1	<5	1	<0.5	1	<0.5	<0.5	<0.5	1	<0.5	<0.5	<0.5
Dissolved Vanadium Dissolved Zinc	ug/l ug/l	<1.5 <3	-	<1.5 <3	<1.5 <3	<1.5	<1.5 <3	<1.5 <3	<1.5 <3	<0.5 <5	<0.5 <5	<0.5 <5	<0.5 14	<0.5 79	<0.5 11	<0.5 <5	<0.5 <5	<0.5 <5	<0.5 <5	<0.5 <5	<0.5 <5	<0.5 <5	<0.5 <5	<0.5 <5	<0.5 <5	<0.5 <0.5 <5 <5
	ugn								~	~	~	~	14	13		~	~	~	79	~	-5	~	٠,		٠.,	3 3
PAHs Acenaphthene	ug/l	<1		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020 <0.02
Acenaphthylene	ug/l	<0.5		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020 <0.02
Anthracene Benzo(a)anthracene	ug/l ug/l	<0.5 <0.5	0.1	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.02 <0.020 <0.02
Benzo(a)pyrene	ug/l	<1	0.00017	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020 <0.02
Benzo(b)fluoranthene Benzo(bk)fluoranthene	ug/l ug/l	<0.008 <1	0.03	<0.008 <0.008	<0.008 <0.008	<0.008 <0.008	<0.008	<0.008 <0.008	<0.008 <0.008	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020 <0.02
Benzo(ghi)perylene	ug/l	<0.5	0.002	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020 <0.02
Benzo(k)fluoranthene Chrysene	ug/l ug/l	<0.008 <0.5	0.03	<0.008 <0.005	<0.008 <0.005	<0.008 <0.005	<0.008 <0.005	<0.008 <0.005	<0.008 <0.005	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.02 <0.020 <0.02
Dibenzo(ah)anthracene	ug/l	<0.5	-	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020 <0.02
Fluoranthene Fluorene	ug/l ug/l	<0.5 <0.5	0.1	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.02 <0.020 <0.02
Indeno(123cd)pyrene	ug/l	<1 <1	0.002	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005 <0.1	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020 <0.02
Naphthalene PAH 16 Total	ug/l ug/l	<1 <0.173	2.4	<0.1 <0.173	<0.1 <0.173	<0.1 <0.173	<0.1 <0.173	<0.1 <0.173	<0.1 <0.173	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	0.012 0.012	0.013 0.013	<0.020 <0.020	0.021 0.021	0.012 0.012	0.01 0.01 ⁻¹
PAH Surrogate % Recovery	%	<0 <0.5	-	85 <0.005	83 <0.005	77 <0.005	83 <0.005	76 <0.005	80 <0.005	- <0.010	- <0.010	<0.010	<0.010	<0.010	- <0.010	<0.020	<0.020	- <0.020	- <0.020	- <0.020	- <0.020	<0.020	- <0.020	<0.020	<0.020	<0.020 <0.02
Phenanthrene Pyrene	ug/l ug/l			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020 <0.02 <0.020 <0.02
VOC TICs		None		ND	ND	ND	ND	ND	ND	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached See Atta
				110	-110	110																				
SVOC TICs	-	None	-	ND	ND	ND	ND	ND	ND	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached See Atta
GRO (>C4-C8)	ug/l	<10	-	<10	<10	<10	<10	<10	<10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
GRO (>C8-C12) GRO (>C4-C12)	ug/l ug/l	<10 <10	-	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
PRO (C5-C-12)	ug/l	<10	-	-	-	-	-	-	-	<10	44	<10	<10	<10	<10	<10	<10	<10	<10	<10	13	<10	16	10	<10	<10 <10
EPH (C8-C40)	ug/l	<10	-	<10	<10	<10	<10	<10	<10	34	58	66	153	158	189	20	18	18	31	33	37	36	43	52	78	31 63
		-0		NDD	-0		-0	-0	-0	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	*0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000
Hexavalent Chromium Total Dissolved Chromium III	ug/l ug/l		-	NDP NDP	<6 <6	<6 <6	<6 <6	<6 <6	<6 <6	<0.003 <0.03	<0.003 <0.03	<0.003 <0.03	<0.003 <0.03	<0.003 <0.03	<0.003 <0.03	<0.003 <0.03	<0.003 <0.03	<0.003 <0.03	<0.003 <0.03	<0.003 <0.03	<0.003 <0.03	<0.003 <0.03	<0.003 <0.03	<0.003 <0.03	<0.003 <0.03	<0.003 <0.00 <0.03 <0.03
COD (Sattlad)		<7		40	50	26	24	-7	37	22	22	20	~10	70	26	- 14	24	12	24	15	15	11	34	20	20	20 62
COD (Settled) Electrical Conductivity @25C	mg/l uS/cm	-1	-	40 -	52 373	26 531	34 714	<7 270	703	22 242	22 376	29 477	<10 314	78 659	26 591	14 540	21 545	12 551	31 672	15 455	15 513	11 234	715	38 471	38 526	28 63 265 591
pH Total Suspended Solids	pH units mg/l	<0.01 <10	-	- <10	8.26 22	8.26 <10	8.17 <10	8.72 <10	8.20 <10	7.9 <2	7.3	7.6 <2	8.1	3.3	7.8	7.8	7.8	8.1 <2	7.5	7.8 <2	7.8 <2	8 <2	7.8 <2	8.0 <2	7.9 <2	8.2 7.9 <2 <2
Turbidity	NTU		-	5.8	10	2.9	2.8	1.4	3.8	4	3.3	3.4	3.9	3.1	6.5	2.1	1.6	1.1	1.6	2.8	3.4	2.1	4	2.1	2.4	1.3 2.9
SVOCs														-		1										
Phenois																										
2-Chlorophenol 2-Methylphenol	ug/l ug/l	<1 <0.5	-	<1 <0.5	<1 <0.5	<1 <0.5	<1 <0.5	<1 <0.5	<1 <0.5	<2	<2 <2	<2 <2	<2	<2	<2 <2	<2 <2	<2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2 <2 <2
2-Nitrophenol	ug/l	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2 <2
2,4-Dichlorophenol 2,4-Dimethylphenol	ug/l ug/l	<0.5 <1	-	<0.5 <1	<0.5 <1	<0.5 <1	<0.5 <1	<0.5 <1	<0.5 <1	<2	<2 <2	<2 <2	<2 <2	<2	<2	<2	<2 <2	<2 <2	<2 <2	<2 <2	<2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2 <2 <2
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	ug/l	<0.5 <1	-	<0.5 <1	<0.5 <1	<0.5 <1	<0.5 <1	<0.5 <1	<0.5 <1	<2 <2	<2 <2	<2	<2 <2	<2 <2	<2 <2	<2	<2 <2	<2 <2	<2 <2	<2 <2	<2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2 <2 <2
4-Chloro-3-methylphenol	ug/l ug/l	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2 <2
4-Methylphenol 4-Nitrophenol	ug/l ug/l	<1 <10	-	<1 <10	<1 <10	<1 <10	<1 <10	<1 <10	<1 <10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2 <2 <2
Pentachlorophenol	ug/l	<1	0.007	<1	<1	<1	<1	<1	<1	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20 <20
Phenol PAHs	ug/l	<1	-	<1	<1	<1	<1	<1	<1	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10 <10
2-Chloronaphthalene	ug/l		-	<1	<1	<1	<1	<1	<1	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2 <2
2-Methylnaphthalene Phthalates	ug/l	<1	-	<1	<1	<1	<1	<1	<1	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2 <2
Bis(2-ethylhexyl) phthalate	ug/l		1.3	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20 <20
Butylbenzyl phthalate Di-n-butyl phthalate	ug/l ug/l	<1.5		<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100 <100
Di-n-Octyl phthalate	ug/l	<1	-	<1 <1	<1 <1	<1	<1	<1	<1	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20 <20 <20
Diethyl phthalate Dimethyl phthalate	ug/l ug/l			<1	<1	<1	<1	<1	<1	<20	<20 <20	<20	<20	<20	<20	<20	<20	<20	<20 <20	<20	<20	<20	<20	<20	<20	<20 <20 <20
Other SVOCs 1,2-Dichlorobenzene	ug/l			<1	<1	<1	<1	<1	<1	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2 <2
1,2,4-Trichlorobenzene	ug/l	<1		<1	<1	<1	<1	<1	<1	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2 <2
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ug/l ug/l	<1 <1	-	<1	<1 <1	<1	<1	<1	<1	<2	<2 <2	<2	<2 <2	<2	<2	<2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2 <2 <2
2-Nitroaniline	ug/l	<1	-	<1	<1	<1	<1	<1	<1	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2 <2
	ug/l ug/l	<0.5 <1	-	<0.5 <1	<0.5 <1	<0.5 <1	<0.5 <1	<0.5 <1	<0.5 <1	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20 <20 <20
2,4-Dinitrotoluene 2,6-Dinitrotoluene		<1	-	<1	<1	<1	<1	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
2,6-Dinitrotoluene 3-Nitroaniline	ug/l	<1	-	<1 <1	<1 <1	<1	<1	<1 <1	<1	<20 <2	<20 <2	<20 <2	<20 <2	<20 <2	<20 <2	<20 <2	<20 <2	<20 <2	<20 <2	<20 <2	<20 <2	<20 <2	<20 <2	<20 <2	<20 <2	<20 <20 <2 <2
2,6-Dinitrotoluene 3-Nitroaniline 4-Bromophenylphenylether	ug/l			<1	<1	<1	<1	<1	<1	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2 <2
2,6-Dinitrotoluene 3-Nitroaniline 4-Bromophenylphenylether 4-Chloroaniline 4-Chlorophenylphenylether	ug/l ug/l ug/l	<1 <1	-		<0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100 <100
2.6-Dinitrotoluene 3-Nitroaniline 4-Bromophenylphenylether 4-Chlorophenylphenylether 4-Chlorophenylphenylether 4-Nitroaniline	ug/l ug/l ug/l ug/l	<1 <1 <0.5		<0.5 <0.5	<0.5	<0.5			<0.5	<20	<20	<20	<20 <20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	-00		
2.6-Dinitrotoluene 3-Nitroaniline 4-Bromophenylphenylether 4-Chlorophenylphenylether 4-Chlorophenylphenylether 4-Nitroaniline Azobenzene Bis(2-chloroethoxy)methane	ug/l ug/l ug/l ug/l ug/l ug/l	<1 <1 <0.5 <0.5 <0.5	-	<0.5 <0.5 <0.5	<0.5 <0.5	<0.5	<0.5	<0.5		-00		<20		<20	<20	<20			-00					<20	<20	<20 <20
2,6-Dintrotoluene 3-Nitroaniline 4-Bromophenylphenylether 4-Chlorophenylphenylether 4-Chlorophenylphenylether 4-Nitroaniline Azobenzene Bis(2-chloroethoxylmethane Bis(2-chloroethylyether	ug/l ug/l ug/l ug/l ug/l ug/l	<1 <1 <0.5 <0.5 <0.5	-	<0.5 <0.5	<0.5			<0.5 <1 <0.5	<1 <0.5	<20 <20	<20 <20	<20	<20	<20	<20	<20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20 <20	<20 <20 <20	<20 <20 <20 <20 <20 <20
2,6-Dintrotoluene 3-Nitroaniline 4-Bromophenylphenylether 4-Chlorophenylphenylether 4-Chlorophenylphenylether 4-Nitroaniline 4-Nitroaniline Azobenzene Bis(2-chloroethoxy)methane Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Carbazole Dibenzofuran	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	<1 <1 <0.5 <0.5 <0.5 <1 <0.5 <1 <0.5	-	<0.5 <0.5 <0.5 <1 <0.5 <0.5	<0.5 <0.5 <1 <0.5 <0.5	<0.5 <1 <0.5 <0.5	<0.5 <1 <0.5 <0.5	<1 <0.5 <0.5	<1 <0.5 <0.5	<20 <2	<20 <2	<20 <2	<20 <2	<20 <2	<20 <2	<20 <2	<20 <2	<20 <2	<20 <2	<20 <20 <2	<20 <20 <2	<20 <20 <2	<20 <20 <2	<20 <20 <2	<20 <20 <2	<20 <20 <20 <20 <2 <2
2,6-Dinitrotoluene 3-Nitroaniline 4-Bromophenylphenylether 4-Chlorophenylphenylether 4-Chlorophenylphenylether 4-Nitroaniline 4-Nitroaniline Azobenzene Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Carbazole Dibenzofuran	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	<1 <0.5 <0.5 <0.5 <0.5 <1 <0.5 <0.5 <1	-	<0.5 <0.5 <0.5 <1 <0.5	<0.5 <0.5 <1 <0.5	<0.5 <1 <0.5	<0.5 <1 <0.5	<1 <0.5	<1 <0.5	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20 <20 <20
2,6-Dintrotoluene 3-Nitroaniline 4-Bromophenylphenylether 4-Chlorophenylphenylether 4-Chlorophenylphenylether 4-Nitroaniline Azobenzene Bis(2-chloroethoxy)methane Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Carbazole Dibenzofuran Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	<1 <1 <1 <0.5 <0.5 <0.5 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	- - - - 0.05 0.6 0.02	<0.5 <0.5 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <1 <1 <1 <1	<0.5 <0.5 <1 <0.5 <0.5 <1 <0.5 <1 <1 <1 <1	<0.5 <1 <0.5 <0.5 <0.5 <1 <1 <1	<0.5 <1 <0.5 <0.5 <0.5 <1 <1 <1	<1 <0.5 <0.5 <1 <1 <1	<1 <0.5 <0.5 <1 <1 <1	<20 <2 <2 <2 <2 -	<20 <2 <2 <2 <2 -	<20 <2 <2 <2 <2 -	<20 <2 <2 <2 <2 -	<20 <2 <2 <2 <2	<20 <2 <2 <2 <2 ·	<20 <2 <2 <2 <2 -	<20 <2 <2 <2 <2 -	<20 <2 <2 <2 <2 -	<20 <2 <2 <2 <2 -	<20 <20 <2 <2 <2 <2 <2	<20 <20 <2 <2 <2 <2 <2	<20 <20 <2 <2 <2 <2 <2	<20 <20 <2 <2 <2 <2 <2	<20 <20 <2 <2 <2 <2 <2	<20 <20 <2 <2 <2 <2 <2	<20 <20 <20 <20 <2 <2 <2 <2 <2 <2 <2 <2 <2 <- <2 <- <- <- <- <- <- <- <-
2,6-Dinitrotoluene 3-Nitroaniline 4-Bromophenylphenylether 4-Chlorophenylphenylether 4-Chlorophenylphenylether 4-Nitroaniline 4-Nitroaniline Azobenzene Bis(2-chloroethoxy)methane Bis(2-chloroethoxy)methane Bis(2-chloroethylyether Carbazole Dibenzofuran Hexachlorobenzene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	<1 <1 <1 <0.5 <0.5 <0.5 <0.5 <1 <0.5 <1 <0.5 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	- - - - 0.05 0.6 0.02	<0.5 <0.5 <0.5 <1 <0.5 <0.5 <1 <1	<0.5 <0.5 <1 <0.5 <0.5 <0.5 <1 <1	<0.5 <1 <0.5 <0.5 <1 <1	<0.5 <1 <0.5 <0.5 <1 <1	<1 <0.5 <0.5 <1 <1	<1 <0.5 <0.5 <1 <1	<20 <2 <2	<20 <2 <2	<20 <2 <2	<20 <2 <2	<20 <2 <2	<20 <2 <2	<20 <2 <2	<20 <2 <2	<20 <2 <2	<20 <2 <2	<20 <20 <2 <2 <2	<20 <20 <2 <2	<20 <20 <2 <2 <2	<20 <20 <2 <2 <2	<20 <20 <2 <2 <2	<20 <20 <2 <2 <2	<20 <20 <20 <20 <20 <2 <2 <2 <2 <2 <2 <2
2.6-Dintrololuene 3-Nitroaniline 4-Bromophenylphenylether 4-Chlorophenylphenylether 4-Chlorophenylphenylether 4-Nitroaniline 4-Nitroaniline Azobenzene Bis(2-chloroethoxy)methane Bis(2	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	<1 <1 <1 <0.5 <0.5 <0.5 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	- - - - 0.05 0.6 0.02	<0.5	<0.5 <0.5 <1 <0.5 <0.5 <1 <1 <1 <0.5 <1 <1 <1 <1 <1 <1 <0.5 <0.5 <1 <1 <1 <1 <1 <0.5 <0.5 <0.5 <1 <1 <1 <1 <1 <0.5 <0.5 <0.5 <1 <1 <1 <1 <1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <1 <0.5 <0.5 <0.5 <1 <1 <1 <1 <0.5 <5 <0.5 <1 <1 <1 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <1 <0.5 <0.5 <0.5 <1 <1 <1 <1 <1 <0.5 <0.5 <1 <1 <1 <1 <0.5 <0.5 <0.5	<1 <0.5 <0.5 <1 <1 <1 <1 <0.5 <0.5 <5 <1 <1 <1 <1 <1 <5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <	<1 <0.5 <0.5 <1 <1 <1 <1 <1 <0.5 <1 <1 <1 <1 <1 <1 <0.5 <1 <1 <1 <1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<20 <2 <2 <2 <2 <2 <2 <2 <2 <20 <20 <20	<20 <2 <2 <2 <2 <2 <2 <2 <2 <20 <20 <20	<20 <2 <2 <2 <2 <2 <2 <2 <20 <20 <20 <20	<20 <2 <2 <2 <2 <2 <2 <2 <20 <20 <20 <20	<20 <2 <2 <2 <2 <2 <2 <2 <20 <20 <20 <20	<20 <2 <2 <2 <2 <2 <2 <2 <2 <20 <20 <20	<20 <2 <2 <2 <2 <2 <2 <2 <20 <20 <20 <20	<20 <2 <2 <2 <2 <2 <2 <2 <2 <20 <20 <20	<20 <2 <2 <2 <2 <2 <2 <2 <20 <20 <20 <20	<20 <2 <2 <2 <2 <2 <2 <2 <20 <20 <20 <20	<20 <20 <2 <2 <2 <2 <2 <2 <20 <20 <20 <2	<20 <20 <2 <2 <2 <2 - <20 <20 <20	<20 <20 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <20 <20	<20 <20 <2 <2 <2 <2 <2 - <20 <20 <20 <20	<20 <20 <2 <2 <2 <2 - <20 <20 <20 <20	<20 <20 <2 <2 <2 <2 - <20 <20 <20	<20 <20 <20 <20 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <20 <20 <20 <20 <20 <20
2.6-Dintrotoluene 3-Nitroaniline 4-Bromophenylphenylether 4-Chlorophenylphenylether 4-Chlorophenylphenylether 4-Nitroaniline Azobenzene Bis (2-chloroethoxy)methane Bis (2-chloroethoxy)methane Bis (2-chloroethoxy)teher Carbazole Dibenzofuran Hexachlorobenzene Hexachlorobenzene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene N-nitrosodi-n-propylamine Nitrobenzene N-nitrosodi-n-propylamine Nitrobenzene	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	- - - - 0.05 0.6 0.02	<0.5	<0.5 <0.5 <1 <0.5 <0.5 <1 <0.5 <1 <1 <1 <1 <1 <1 <1 <0.5	<0.5 <1 <0.5 <0.5 <1 <1 <1 <1 <1 <0.5 <1 <1 <1 <1 <0.5 <0.5 <1 <1 <1 <1 <0.5 <0.5 <0.5 <1 1 39SV	<0.5 <1 <0.5 <0.5 <0.5 <1 <1 <1 <1 <1 <0.5	<1 <0.5 <0.5 <1 <1 <1 <1 <0.5	<1	<20 <2 <2 <2 <2 <2 <2 <2 <2 <20 <20	<20 <2 <2 <2 <2 - - <20 <20	<20 <2 <2 <2 <2 <2 <2 <2 <2 <20 <20	<20 <2 <2 <2 <2 <2 <2 <2 <20 <20 <20	<20 <2 <2 <2 <2 <2 <2 <2 <20 <20 <20	<20 <2 <2 <2 <2 <	<20 <2 <2 <2 <2 <2 <2 <2 <20 <20	<20 <2 <2 <2 <2 <	<20 <2 <2 <2 <2 <2 <2 <2 <20 <20	<20 <2 <2 <2 <2 <2 <2 <2 <2 <20 <20	<20 <20 <2 <2 <2 <2 <2 - <20 <20	<20 <20 <2 <2 <2 <2 - <20 <20	<20 <20 <2 <2 <2 <2 <2 - <20 <20	<20 <20 <2 <2 <2 <2 - <20 <20	<20 <20 <2 <2 <2 <2 - <20 <20	<20 <20 <2 <2 <2 <2 - <20 <20	<20 <20 <20 <20 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <20 <20 <20 <20 <20 <20
	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	- - - 0.05 0.6 0.02 - -	<0.5	<0.5 <0.5 <1 <0.5 <0.5 <0.5 <1 <1 <1 <1 <1 <1 <1 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<0.5 <1 <0.5 <0.5 <0.5 <1 <1 <1 <1 <1 <1 <0.5 <0.5 <1 <1 <1 <1 <1 <1 <0.5 <0.5 <1 <1	<0.5 <1 <0.5 <0.5 <0.5 <1 <1 <1 <1 <0.5 <0.5 <1 <1 <1 <1 <0.5 <0.5 <0.5 <1	<1 <0.5 <0.5 <0.5 <1 <1 <1 <1 <0.5 <0.5 <1 <1 <1 <1 <1 <1 <1 <0.5 <0.5 <0.5 <0.5 <1 <1 <1 <1 <1 <0.5 <0.5 <0.5 <0.5 <1 <1 <1 <0.5 <0.5 <0.5 <1 <1 <1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<1 <0.5 <0.5 <0.5 <1 <1 <1 <1 <0.5 <0.5 <1 <1 <1 <1 <0.5 <0.5 <0.5 <1	<20 <2 <2 <2 <2 <2 <2 <2 <2 <20 <20 <20	<20 <2 <2 <2 <2 <2 <2 <2 <2 <20 <20 <20	<20 <2 <2 <2 <2 <2 <2 <2 <20 <20 <20 <20	<20 <2 <2 <2 <2 <2 <2 <2 <20 <20 <20 <20	<20 <2 <2 <2 <2 <2 <2 <2 <20 <20 <20 <20	<20 <2 <2 <2 <2 <2 <2 <2 <2 <20 <20 <20	<20 <2 <2 <2 <2 <2 <2 <2 <20 <20 <20 <20	<20 <2 <2 <2 <2 <2 <2 <2 <2 <20 <20 <20	<20 <2 <2 <2 <2 <2 <2 <2 <20 <20 <20 <20	<20 <2 <2 <2 <2 <2 <2 <2 <20 <20 <20 <20	<20 <20 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <20 <20	<20 <20 <2 <2 <2 <2 - <20 <20 <20	<20 <20 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <20 <20	<20 <20 <2 <2 <2 <2 <2 - <20 <20 <20 <20	<20 <20 <2 <2 <2 <2 - <20 <20 <20 <20	<20 <20 <2 <2 <2 <2 - <20 <20 <20	<20 <20 <20 <20 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <20 <20 <20 <20 <20 <20

Part																												
Semente property of the proper	SURFACE WATER QUALITY RESULTS	_	_					0 16 11									1 2	0.45.11			I	0.15.11				0.46.11		
Same Bar	Monitoring location	4																										
Second Column	Date																	0.00.0000	0.00.0000									
Company Comp		Units	LOD																									
Column C		4																										
The control of the co				- Tratoro	22/2826	22/33/8	22/6185	22/6185	22/6185	22/6185	505912	505912	505912	1564141	1564140	1564142	15/6/89	15/6/9/	15/6/98	15/6/99	1586048	1586049	1586050	1586056	1604331	1604331	1604331	1604331
Column					-0	-0		-0	-0		-4.00	-4.00	-4.00	-4.00	-4.00	-4.00	-4.00	-4.00	-4.00	-4.00	-4.00	-4.00	-1.00	-4.00	-4.00	-4.00	-4.00	-1.00
Column				-																								
Column C				-																								
				-		-				-																		
Trigger Trig										_		-1.00							-1.00			11.00		-1.00				
Trigonomy	1,1 Dishibi Gullano			_			~	-0	.0	~				-1.00		-1.00				11.00			-11.00					
O Springers				-			~	-0	.0	~	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	11.00		-1.00	-1.00		11.00		-11.00		11.00	-1.00	
13-14-15-15-15-15-15-15-15-15-15-15-15-15-15-				0.4	_		-		_	-		-1.00																
Company Comp					_		-			-																		
13-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-					-	-	-																					
Other Antoning 10			_ ~							-		11.00		11.00		-1.00			-1.00	-1.00		11.00	-11.00	-11.00		-1.00		
Columnia					_		-		_	-														-11.00				
1. 1. 1. 1. 1. 1. 1. 1.					-2																							
March 10					<3	_	_	<3		_																		
October 1	1,0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			10	_	-	-			-																		
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-			-			_			~												11.00	-1.00	-11.00				
Company Comp				-		<3		~			<1.00	<1.00		-1.00		-1.00			<1.00			<1.00	-1.00	<1.00		<1.00		
1				-	<3	<3	<3	<3	<3	<3																		
Accordance Age				-	<2	<2		<2				<1.00																
13 13 14 15 15 15 15 15 15 15			<3	-	<3	<3	<3	<3	<3	<3	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Command	2,2-Dichloropropane		<1	-	<1	<1	<1	<1	<1	<1	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00		<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	
Constitution of Constitution o			<3	-	<3	<3	<3	<3	<3	<3	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	
Hampelander with 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4-Chlorotoluene		<3	-	<3	<3	<3	<3	<3	<3	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Control Cont	4-Isopropyltoluene		<3	-	<3	<3	<3	<3	<3	<3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Part	Benzene		<0.5	10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Processor Proc	Bromobenzene		<2	-	<2	<2	<2	<2	<2	<2	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Seminary Market	Bromochloromethane		<2	-	<2	<2	<2	<2	<2	<2	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Company Comp	Bromodichloromethane		<2	-	<2	<2	<2	<2	<2	<2	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Carlo Interferience	Bromoform	ug/l	<2	-	<2	<2	<2	<2	<2	<2	<1.00	<1.00		<1.00	<1.00	<1.00	<1.00		<1.00		<1.00	<1.00	<1.00	<1.00		<1.00		
Convertance	Bromomethane	ug/l		-	- 1	<1	- 1	<1	<1	- 1														-11.00				
Charlestenes	Carbon tetrachloride	ug/l	<2	12	<2	<2	<2	<2	<2	<2						<1.00							<1.00					
Chrometome	Chlorobenzene	ug/l	<2	-		_	_		_	_																		
Convenience					_																							
091 43 - 43 43 43 43 44 450 4100 4100 4100 4100 4100 4100 41			~	-		_				_																		
September Sept				-	-	_	-		.0																			
Demonstration Ug Q				-		<3			-																			
DebromeParker Spi Cal			_	-		<2				_																		
Decisional number 1981 22 1982 22 24 24 24 24 24 24				-		_				_																		
Deltomathane (DCM) Supplementary Supplem	Dibromonano		_ ~	-			_ ~	-0		~	-1.00	11.00	-1.00	11.00	11.00	-1.00		-1.00	11.00	-1.00	-1.00	11.00	-11.00	-11.00	11.00	-1.00	-1.00	
Ellyberane ugl c1 c1 c1 c1 c1 c1 c1 c	Didiliordaniaoronidatano		~	- 20	~	~					-1.00	-1.00		11.00		-1.00			11.00	11.00		11.00	-1.00	-11.00		11.00	-1.00	
Heachforbulatiene Ugi 43 43 43 43 43 43 4				- 20																								
Septopherage Ug -3			<u> </u>																									
Importance Supt C2 C2 C2 C2 C2 C3 C4 C4 C4 C4 C4 C4 C4			_ ~		-			-																				
Methy Teriary Buly Ether Methy Teriary Buly					-	.0	_ ~	-0	_ ~	-														-11.00		1.00		
Naphtheries				-																								
n-Bullyberzene ugil c3 c3 c3 c3 c3 c3 c3 c				2.4		-0.1						11.00											11.00	11.00				
Designer (a) by the control of the			_	-																								
Propytherazene ug/l <3 - <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 < <			<1	-	<1	<1	<1	<1	<1	<1	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	
Sec-Bulylbenzene Ug/l <3 . <3 <3 <3 <3 <3 <3	Propylbenzene		<3	-	<3	<3	<3	<3	<3	<3		<1.00		<1.00					<1.00			<1.00	<1.00	<1.00		<1.00		
Syrepate	sec-Butylbenzene		<3	-	<3	<3	<3	<3	<3	<3	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Surrogate Recovery Abmonfluorobenzene			<2	-	<2	<2	<2	<2	<2	<2	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Surrogate Recovery Tolume D8 % <0 . 113 101 125 124 124 123	Surrogate Recovery 4-Bromofluorobenzene		<0	-	110	108	111	109	109	108	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-
tert-Butylenzene ugil -3 -3 -3 -3 -43 -3 -43 -3 -43 <th< td=""><td></td><td>%</td><td><0</td><td>-</td><td>113</td><td>101</td><td>125</td><td></td><td>124</td><td>123</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></th<>		%	<0	-	113	101	125		124	123	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
Telrachiorethene (PCE) Ug/l <3 <3 <3 <3 <3 <3 <3 <		ug/l	<3	-	<3	<3	<3	<3	<3	<3	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Toluene ug/l <5 - <5 <5 <5 <5 <5 <5			<3	_	<3	<3	<3	<3	<3	<3	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	
trans-1-3-Dichloropropene ugil <2 - <2 <2 <2 <2 <2 <2 <2 <2 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00	Toluene		<5	-	<5	<5	<5	<5	<5	<5	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	
Trichloroethene (TCE)	trans-1-2-Dichloroethene		<3	-	<3	<3	<3	<3	<3	<3	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Trichlorofluoromethane ug/l <3 - <3 <3 <3 <3 <3 <3 <0.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.	trans-1-3-Dichloropropene		<2	-	<2	<2	<2	<2	<2	<2	<1.00	<1.00		<1.00		<1.00		<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00				
		ug/l	-	-	_		-			-																		
	Trichlorofluoromethane	ug/l	<3	-	<3		~			_ ~						-1.00								<1.00				
	Vinyl Chloride	ug/l	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500

Legend
Directive 2008/105/EC Setting Environmental Quality Standards in the Field of Water Policy
NDP - No Determination Possible
Below Laboratory Detection Limit
* Surface Water Sampling undertaken by Bord na Móna

