LICENCE REFERENCE No.	RISK ASSESSMENT METHODOLOGY STAGE & STEP	REPORT VERSION
P0004-05	Stage 3	Final

Quarterly Monitoring Report Update – June 2019 for the Environmental Protection Agency

(July 2019)

(P0004-05)

Project Title: GSK Enabling Works Report

Licence No: P0004-05 **Project No:** 51823

Contract No: 51823 Stage 3

Report Ref: Quarterly Monitoring Report Update – June 2019

Status: Final

Client: GlaxoSmithKline

Client Details: GlaxoSmithKline, Currabinny, Co. Cork

Issued By: Verdé Environmental Consultants Ltd,

Unit 3, Airport East Business & Technology Park,

Farmer's Cross, Co. Cork

Document Production/Approval Record

	Name	Signature	Date	Position	% Input
Created by (consultant)	Donncha McCarthy	Donala Math	15/07/ 2019	Environmental Scientist	60
Checked by (consultant)	Donal Hogan	Donel Hogen	17/07/ 2019	Senior Hydrogeologist	30
Approved by (consultant)	Kevin Cleary	deni Clay	17/07/ 2019	Operations Director	10
Site Approval by	John Linehan	John Linehan	20/08/ 2019	Environmental Compliance Officer	N/A

GSK 20th August 2019 P0004-05 51823

LIMITATION

This report represents the results of the site monitoring and remediation works conducted at the above referenced site. Best practice was followed at all times and within the limitations stated. This report is the property of Verdé Environmental Consultants Limited (Verdé) and cannot be used, copied or given to any third party without the explicit prior approval or agreement of Verdé.

GSK 20th August 2019 P0004-05 51823

TABLE OF CONTENTS

Section	on .	Page No
EXE	CUTIVE SUMMARY	I
1.	INTRODUCTION1	
1.1	SCOPE OF WORKS	3
2.	DETAILS OF CONSTRUCTION/ENABLING WORKS	3
2.1	PUMP AND TREAT OPERATIONS	3
2.2	SAMPLING AND MONITORING4	Ŀ
3.	GROUNDWATER MONITORING RESULTS	;
3.1	GROUNDWATER REFERENCE CRITERIA5	;
3.2	ANALYTICAL PARAMETERS5	;
3.3	PERIMETER WELLS & DOWNGRADIENT COMPLIANCE POINT RESULTS SUMMARY)
3.4	FIELD WATER QUALITY READINGS9)
4.	SUMMARY & CONCLUSIONS10)
5.	RECOMMENDATIONS11	

FIGURES

Figure 1 Site Location Map

Figure 2 Bedrock Groundwater Contour Map (11th June 2019)
Figure 3 Perched Groundwater Contour Map (11th June 2019)

Figure 4 Conceptual Site Model A-A'

Figure 5 Mapping of Ammonium Groundwater Mann-Kendall Trends

TABLES

Table 1 Groundwater Sample Inventory

Table 2-17 Groundwater Analytical Results (January 2016 to June 2019) & Trend Graphs

Table 18 Groundwater Levels to Datum – 11th June 2019

APPENDICES

Appendix A Monitoring Sampling Logs
Appendix B Laboratory Certificates

Appendix C Mann Kendall Statistical Trend Analysis for Ammonium Concentrations

GSK 20th August 2019 P0004-05 51823

EXECUTIVE SUMMARY

The June 2019 quarterly monitoring round consisted of sampling 19 bedrock and six perched groundwater monitoring wells together with the compliance point on the foreshore to the north.

The remediation objectives in relation to solvent/alcohol contamination incident were to remediate the perched groundwater in the subsoils and underlying bedrock aquifer in the vicinity of the source area identified at Production Building 6. This groundwater pump & treat work has been successful in remediating the bedrock aquifer of solvent/alcohol contamination with no exceedance of the applicable Remedial Target Concentrations (RTCs) in June 2019. There was a localised toluene exceedance in perched groundwater in well MW204.

Currently six of the remediation wells on-site are being used to assist in the remediation of elevated ammonium in the northern region of the site, four of which were operation in June 2019.

Following a meeting a EPA office in May 2019 it was agreed that the groundwater remediation programme in relation to ammonium going forward is to focus on long term pump & treat operation of the existing remediation wells on-site and discontinue the ORC advanced in-situ trial. A water level mass balance is being prepared to examine the effectiveness of the active pump & treat groundwater containment system operating on-site.

The 2018 sampling works indicate that the background ammonium concentrations in the harbour waters are similar to or more elevated than the concentration being detected at the compliance point.

In June 2019 there was no detection of THF above the RTC value. Currently there are slightly elevated THF concentrations in the bedrock monitoring wells AGW16 (0.617mg/l) and in the perched groundwater of MW204 (0.166mg/l). Both AGW16 and MW204 are showing an overall continuous decline from more elevated 2016 concentrations.

In June 2019 there was an anomalously high detection of THF (1.271mg/l) in the bedrock monitoring well AGW5 at a level which had not been detected in this well previously. Further sampling on 19th June (1.006mg/l) and 10th July 2019 (0.969mg/l) showed a declining trend. As this is an active pumping well further decrease is likely given that there is no known new source of THF in the area.

Statistical analysis of the ammonium concentrations in the monitoring and remediation wells on-site shows a largely stable to decreasing trend for ammonium across the site. The most elevated ammonium concentrations on-site are present in the downgradient region of the Bioplant in remediation wells AGW19 & AGW20. This is thought to be related to a historical source in the area from former ammonia scrubbers in this area of the site.

If capacity allows, it is recommended that remediation wells AGW5, AGW14, AGW16, AGW17, AGW19 and AGW20 should maintain operation as part of the ammonium remediation programme.

It is recommended to undertake the following works based on this report:

- 1. Further groundwater monitoring of ammonium and electrical conductivity on the most contaminated remediation well AGW20 at both high and low tidal ranges to assess if the abstraction rate from this well can be increased without causing saline intrusion effects in this northern area of the site.
- 2. A water mass balance for the GSK site and implement a programme of monitoring sustainable abstraction rates from the remediation wells.
- 3. Obtain a further groundwater sample from AGW5 in August 2019 to confirm the declining trend in THF in this monitoring well.

GSK i 20th August 2019 P0004-05 51823

	EPA Contaminated Land & roundwater Risk Assessment Methodology	Report Reference	Report Date	Status
	STAGE 1: SITE C	CHARACTERISATION	& ASSESSMENT	
1.1	PRELIMINARY SITE ASSESSMENT	Preliminary Report, Verdé, Ref: 50982	10 th March 2016	Final
1.2	DETAILED SITE ASSESSMENT	Detailed Report, Verdé, Ref: 50982	10 th June 2016	Final
1.3	QUANTITATIVE RISK ASSESSMENT	Quantitative RA Report, Verdé, Ref: 50982	15 th June 2016	Final
	STAGE 2: CORREC	CTIVE ACTION FEAS	IBILITY & DESIGN	
2.1	OUTLINE CORRECTIVE ACTION STRATEGY	Corrective Action Report, Verdé, Ref: 50982	28 th June 2016	Final
2.2	FEASIBILITY STUDY & OUTLINE DESIGN			
2.3	DETAILED DESIGN			
2.4	FINAL STRATEGY & IMPLEMENTATION PLAN			
	STAGE 3: CORRECTIVE	E ACTION IMPLEMEN	TATION & AFTERCA	RE
3.1	ENABLING WORKS	Quarterly Monitoring Report June 2019 Verdé Ref: 51823	28 th July 2019	Final
3.2	CORRECTIVE ACTION IMPLEMENTATION & VERIFICATION			
3.3	AFTERCARE			

1. INTRODUCTION

Verdé Environmental Consultants Ltd., (Verdé) was commissioned by GlaxoSmithKline (GSK) to undertake a quarterly programme to include the following as agreed with the Environmental Protection Agency (EPA):

- Undertake a full dip round of all wells and check on pump & treat system operation and flow rates to provide updated groundwater contour maps for the bedrock and perched aquifers to ensure hydraulic containment is being maintained;
- Sampling of 17 No. bedrock and three available perched groundwater monitoring wells together with the compliance seepage point on the foreshore to the north of the site and duplicate sample for quality assurance;
- The newly installed bedrock remediation wells (AGW19 & AGW20) and three new perched groundwater monitoring wells in the Bioplant area were also included by GSK in the June 2019 quarterly groundwater monitoring programme.

The EPA have requested that the above works are undertaken to confirm the overall declining trend and to confirm stable plume conditions in the source area together with confirmation of no adverse impact to the perimeter wells and downgradient receptor.

A sample inventory of the historical and on-going monitoring programme is presented in Table 1. A site location map is presented in Figure 1, bedrock groundwater contour map (Figure 2), perched groundwater contour map (Figure 3), and a conceptual site model for the site in Figure 4.

Various phases of ground investigation, monitoring and risk assessments have been completed at the site to assess and delineate soil and groundwater contamination associated with various spill events, which are thought to date back to early 2015 and early 2016. Of these, elevated concentrations of Methanol, Ethanol, Iso-propanol (IPA), Tetrahydrofuran (THF), Toluene and Dichloromethane (DCM) were locally identified within the near surface soils and underlying karstic groundwater within the vicinity of Production Buildings No. 2 and No. 6.

A Detailed Quantitative Risk Assessment (DQRA) for the above solvent and alcohols completed for the site in June 2016 provided site specific Remedial Target Concentrations (RTC) for the Contaminants of Concern (CoC) on site

A Corrective Action Feasibility & Design Report completed in June 2016 outlined the basis of the remediation program on site. This included a series of bedrock wells and perched groundwater wells which are actively abstracting contaminated groundwater on-site as part of a pump & treat remediation programme. The remediation pump & treat wells were switched off in October 2017 to monitor for potential rebound effects from COC that maybe trapped in fractures or unsaturated zone around pumping wells. In March 2018 the declining trend in COC in the source area has shown there is no rebound effect and the remediation wells were successful in remediating the alcohol/solvent contaminants. It was recommended to use all remediation wells on-site to assist in the remediation of elevated ammonium in the northern region of the site.

In early 2018, Verde engaged the services of groundwater remediation specialist Regenesis to develop an aerobic bioremediation trial for the GSK site in relation to ammonium. Given the large area of the site where elevated ammonium is present historically it was proposed to use monitoring well AGW11 (50mm diameter and 14m deep with water table ~6m below ground level) to undertake a trial for ammonium remediation.

This ammonium groundwater remediation trial commenced in March 2018 when Oxygen

GSK 1 20th August 2019 P0004-05 51823

Release Compound (ORC) remediation application and installation of ORC socks were placed in this monitoring well. During the June 2018 quarterly monitoring of this well an anomalous elevated detection of THF and ammonium were observed. As part of precautionary works, Verde recommended that the wells in the vicinity of AGW11 were sampled weekly to monitor for a potential new ammonium/THF source in this area of the site. The subsequent weekly monitoring included two monitoring rounds of key wells (AGW3, AGW4, AGW14 and compliance point) which are included in this report.

Verde carried out the initial ammonia DQRA for the site in March 2016. Since then a series of further site investigations have been undertaken on-site in the perched groundwater and underlying bedrock aquifer with monitoring and remediation wells installed. This provides more information together with additional groundwater quality data to allow the initial DQRA to be updated. The EPA requested that the DQRA on ammonium be updated as "it is not appropriate to refer to the outcome of this report in the assessment of the impact of the current concentration and trends on-site".

A suspected source of ammonium was detected in the vicinity of the bioplant in June 2018 and there was a site investigation consequently conducted in the suspected source area which involved the drilling of boreholes, soil sampling, monitoring well installations and groundwater sampling. Results indicated that there was some localised shallow ammonium contamination in the vicinity of the bioplant. The DQRA on ammonium was subsequently revised in September 2018 with respect to current ammonium concentrations and trends on-site.

The revised ammonium DQRA concluded that the flux of ammonium is extremely low and the actual ammonium seepage concentrations and DQRA predicted concentrations at point of entry to the Cork Harbour waters are within the range of actual concentrations in the Cork Harbour waters. Furthermore, ammonium does not bio-accumulate and will be vulnerable to biodegradation. Therefore the actual level of impact on the receiving water body will be very low.

Ammonium concentrations in the pumping wells are showing a general stable or gradual declining trend. Further groundwater monitoring and corresponding monitoring of the compliance seepage points will provide data to develop trends from which further analysis on the timeframe can be made.

The overall groundwater remediation programme and timeline in relation to the historical ammonium beneath the northern region of the GSK site was discussed in a meeting at EPA offices on 10th May 2019 between GSK, Verde and Geosyntec (EPA independent consultants). The following actions were agreed at the meeting;

- Maintain the quarterly monitoring programme to include the groundwater and perched groundwater monitoring wells with field water quality readings and groundwater analysis as per previous rounds.
- Discontinue the ORC advanced sock trial and maintain the current pump & treat operations form the existing remediation wells to reduce the elevated ammonium concentrations.
- Investigate the feasibility of further determining groundwater migration beyond the site boundary into Cork Harbour. Currently GSK do not own the land on the foreshore outside the boundary fence making drilling in this area not feasible in the short term and GSK are undertaking further investigation into obtaining access which is also part of Cork Harbour special protection area (SPA) and will require consultation with the National Park & Wildlife Service (NPWS).
- Carry out a water level and mass balance assessment in relation to the effectiveness of the active pump & treat groundwater containment system operating on-site.

1.1 Scope of Works

In order to meet the objective of the brief the following scope of works was completed:

- Ongoing groundwater abstraction from bedrock remediation wells: AGW5, AGW14, AGW16, and AGW17 together with new remediation wells AGW19 and AGW20.
- Quarterly monitoring of all groundwater monitoring wells on-site together with downgradient compliance point on the foreshore.
- Continued monitoring of all pumping wells to assess the effectiveness of pump & treat works on the ammonium groundwater concentrations in the northern portion of the GSK site.

2. DETAILS OF CONSTRUCTION/ENABLING WORKS

2.1 Pump and Treat Operations

In August 2016 the majority of the proposed groundwater abstraction wells on-site were commissioned as part of active pump & treat remediation of the contaminated solvent/alcohol perched groundwater around Building 6 and in the underlying limestone bedrock aquifer in the identified source area of the central region of the site. Currently the aim of the remediation wells is primarily in relation to remediating the elevated ammonium the northern region of the GSK site. Two further proposed remediation wells (AGW19 and AGW20) were commissioned in November 2018.

The details on the groundwater pump & treat remediation works are outlined in Table 2.1 below.

Well ID	Maximum Sustainable Pumping Rate from pumping tests (m³/day)	Proposed Maximum Pumping Rate (m³/day)
AGW16	100	25
AGW5	20	15
AGW14	70	20
AGW17	50	30
AGW19	150	30
AGW20	150	30
	Total	150

Currently the operation of the remediation pumps is controlled based on the ability of the onsite wastewater treatment systems to handle groundwater quantity. All remediation wells are fitted with manual flowmeters to enable discharge volumes to be recorded.

Groundwater levels from all wells were taken on 11th June 2019, as presented in Table 18 from which a groundwater contour map was created for the bedrock monitoring wells in Figure 2 and perched groundwater in the source area in Figure 3. The influence of the remediation pumping wells on-site in relation to the ammonium can be seen in Figure 2 where an effective capture zone is created around the pumping wells in order to reduce the elevated ammonium in the northern region of the GSK site, as presented in conceptual site model in Figure 4.

The perched groundwater in the overburden in June 2019 is seen to flow in an easterly to north-easterly flow direction following site topography, as presented in Figure 3.

2.2 Sampling and Monitoring

Prior to sampling works groundwater levels are recorded from a reference point of the top of the well standpipes. A minimum of three well volumes were purged prior to sampling. For pumping wells groundwater samples are obtained directly from sample taps on the discharge pipes.

During purging, groundwater quality readings are obtained using a YSI multimeter. Readings are obtained following parameter stabilisation. Samples are obtained from either dedicated sampling bailers or tubing. Details of the sampling and field readings from each well and down-gradient compliance point sampled on 11th June 2019 are presented in the sampling logs in Appendix A.

All water samples were collected in laboratory supplied containers with VOC/alcohol parameters collected in glass vials with septa to prevent any headspace loss. Samples were stored in cool boxes prior to dispatch to Element Materials Technology Group Limited in the UK for chemical analysis with analysis requirements outlined in chain of custody documentation forms. Samples for ammonia were obtained in plastic bottles with sulphuric acid preservative. Samples were stored in chilled coolboxes (<9°C) and dispatched overnight to the laboratory.

The detail of the groundwater sampling inventory is presented in Table 1. Quarterly groundwater analytical results are presented in Tables 2-17 for the June 2019 monitoring round with laboratory certificates in Appendix B.

3. GROUNDWATER MONITORING RESULTS

3.1 Groundwater Reference Criteria

Comparisons between concentrations of the analytical parameters and industry-recognised benchmark criteria have been made to highlight the range of concentrations observed. The inorganic water quality results have been compared to the following:

- Parametric Value (PV) under S.I. 122 of 2014;
- Groundwater Regulation Threshold Values under S.I. 9 of 2010 & S.I. 366 of 2016;
- Environmental Protection Agency (EPA) Interim Guideline Values;
- Previous sampling rounds;
- Remedial Target Concentrations (RTCs) for solvents/alcohols & ammonia.

The RTCs are used as an initial benchmark to remediate the source area followed by further remediation works to try to achieve pre-contamination incident concentrations in the bedrock aquifer beneath the site.

3.2 Analytical Parameters

3.2.1 Toluene

Toluene was not detected in all of the bedrock monitoring wells in the June 2019 monitoring round. Overall it can be seen that toluene is remediated successfully on-site in the bedrock aquifer.

Perched groundwater well MW204, located adjacent to Building 6, shows a slight increase from the previous March 2019 monitoring round but an overall decrease from June 2018. A concentration of 24,407mg/l was detected in June 2019 which is above the RTC for this compound. Currently the pump in this well is not operating due to poor groundwater recovery rates. The well was fitted with ORC remediation socks in March 2018 which are removed prior to sampling. In June 2019 these ORC socks were not submerged in the perched groundwater due to a kink in the standpipe. They were removed from the standpipe, as agreed with the EPA.

3.2.2 Dichloromethane (DCM)

DCM was undetected in the bedrock and perched groundwater wells during the June 2019 quarterly monitoring round, which is similar to the previous monitoring round. Overall it shows that this previously elevated contaminant in the Building 6 area has been remediated on-site.

3.2.3. 1,2-Dichloroethane

1,2-Dichloroethane was undetected in the 2019 quarterly monitoring rounds in the bedrock monitoring wells which is similar to the previous monitoring round. Trace levels of 1,2-Dichloroethane were detected in the perched monitoring well MW204 in June 2019 which is just above the laboratory limit of detection of 2ug/l as detected in this well historically. The compound was undetected in all other perched monitoring wells in June 2019. Overall it shows that this previously detected contaminant has been remediated on-site.

3.2.4 Benzene, Xylene & Ethylbenzene

Benzene exceeded the IGV, TSV and Groundwater Regulations value in the bedrock and perched groundwater wells of AGW14 and MW-204 in June 2019, which shows a very slight increase in this COC from the previous monitoring round.

Ethylbenzene was not detected in the bedrock wells in June 2019 which shows an improvement from the previous monitoring round. Trace levels of ethylbenzene were detected in MW204 and MW301. The IGV for p/m xylene was exceeded in the perched groundwater of MW204 similar to recent monitoring rounds with no detection in the bedrock wells on site in June 2019, with the exception of AGW16 which had trace levels of o-xylenes.

3.2.5 Vinyl Chloride

Vinyl Chloride was undetected in June 2019 in all bedrock monitoring wells which is similar to the previous March 2019 monitoring round. Trace levels of Vinyl Chloride were detected in the perched monitoring well MW204 at 1ug/l which is just above the laboratory limit of detection.

3.2.6 Methyl Tertiary Butyl Ether (MTBE)

In June 2019 there was trace levels of MTBE detected in most monitoring wells on-site but none exceeding the IGV standard of 30µg/L, similar to the previous monitoring rounds. Very low concentrations of MTBE are present across the site and are not thought to be associated with the 2016 Building 6 solvent/alcohol contamination incident.

3.2.7 Speciated Phenols

There was no detection of phenols in any of the bedrock or perched groundwater samples taken on site during the June 2019 monitoring round with the exception of AGW3 and MW204 which contained trace levels of Resorcinol in AGW3 and low levels of Phenol, m/p-cresol, o-cresol and total cresols in MW204. The levels of Resorcinol detected in AGW3 are just above the laboratory limit of detection and levels of Speciated Phenols have fluctuated in MW204 historically. Overall there is an improvement in groundwater quality at the site with respect to concentrations of Speciated Phenols.

3.2.8 Alcohols

The DQRA completed for the site provided site specific calculated RTC value of 1,000mg/l for alcohol concentrations. Since monitoring in February 2016 there was no exceedance of the calculated RTC for alcohol compounds on-site.

In June 2019 alcohols were undetected in the bedrock wells similar to recent monitoring rounds.

Alcohols were undetected in all of the perched groundwater monitoring wells in June 2019, which shows a decrease from the previous 2018 monitoring rounds.

The historical alcohol groundwater contamination is therefore largely remediated on-site, as presented in the table trend graphs for the pumping wells.

3.2.9 Tetrahydrofuran (THF)

An RTC of $9,310\mu g/l$ was calculated for THF, which has been added to the analytical suite since May 2016. Overall when comparing the THF concentrations from the site wide monitoring round in May 2016 to June 2019 it can be seen that the THF contamination plume is largely decreasing in the bedrock aquifer in and outside the source area, showing pump & treat operations are an effective containment and remediation measure.

In June 2019 there was no detection of THF above the RTC value. Reported concentrations of THF parameter in active pumping wells AGW14 and AGW17 decreased from June 2018 with levels below the groundwater regulation standard from September 2018 to March 2019.

Currently there are slightly elevated THF concentrations in the bedrock monitoring well AGW16 (0.617mg/l) and in the perched groundwater of MW204 (0.166mg/l). Both AGW16 and MW204 are showing an overall continuous decline from the more elevated 2016 concentrations as presented in the table trend graphs.

In June 2019 there was an anomalously high detection of THF (1.271mg/l) in the bedrock monitoring well AGW5 at a level which had not been detected in this well at these concentrations previously. AGW5 was resampled for THF on 19th June 2019 (1.006mg/l) and 10th July 2019 (0.969mg/l) and results showed that there was a declining trend but it remains slightly more elevated than detected in this well historically. This well is currently an active groundwater remediation well and therefore ongoing pumping is expected to continue this declining trend as there is no known new THF source. Pumping will also help to contain the localised THF groundwater contamination in this area of the site.

3.2.10 Ammonium

Ammoniacal Nitrogen concentrations were converted to ammonium for comparison with the groundwater quality standards. In the June 2019 monitoring round elevated ammonium concentrations were detected in most groundwater wells on-site apart from wells AGW1(a), AGW6 and AGW8 which are located downgradient of the production area on-site. This is a similar trend to recent groundwater monitoring rounds.

Elevated concentrations were detected in all wells in the northern region of the site at pumping wells AGW5, AGW14, AGW16, AGW19 and AGW20 and monitoring wells AGW3, AGW4, AGW11(a) and AGW12.

In order to assess the long-term trends on the ammonium concentrations the groundwater monitoring data from 2005 to 2019 was run using the Mann Kendal statistical analysis tool for the historical and more recently installed monitoring and remediation wells, as presented in Appendix C. The summary findings of the statistical analysis trends are presented in Table 3.2.10 below and presented in Figure 5.

Table 3.2.10 Groundwater Ammonium Mann-Kendall Trend Analysis

	Mann-Kendall Tr	end Analysis
GSK Am	monium Groundwater	Results from 2005 to 2019
Well ID	Long-term Trend	Short-term Trend
AGW1a	Decreasing	Decreasing
AGW2	Decreasing	Increasing
AGW3	Increasing	Decreasing
AGW4	Increasing	Stable
AGW5	No Trend	Stable
AGW6	No Trend	Decreasing
AGW8	No Trend	No Trend
AGW9	Decreasing	Stable
AGW10	Decreasing	Stable
AGW11a	Increasing	Stable
AGW12	Increasing	Decreasing
AGW13	No trend	Decreasing
AGW14	Increasing	Stable
AGW16	Decreasing	Stable
AGW17	Decreasing	Decreasing
AGW18	No Trend	No Trend
AGW19	N/A	Probably Decreasing
AGW20	N/A	Decreasing
MW204	No Trend	Stable
MW227	Decreasing	Decreasing
MW228	Stable	Decreasing
MW301	N/A	Stable
MW304	N/A	No Trend
MW305	N/A	No Trend
СР	No Trend	No Trend

Overall the groundwater ammonium concentrations show elevated concentrations that have long term decreasing, increasing or no trend. However, when examining the more recent data from 2016 to mid 2019 the concentrations show more fluctuations due to more data being available but also likely to be related to the pumping of up to eight groundwater wells in the bedrock aquifer beneath the site. The recent monitoring results show a stable to decreasing trend for ammonium across the site which shows an improvement in the historically elevated ammonium concentrations across the north of the site. Elevated concentrations in the northern

region of the Bioplant are related to a suspected leak in mid 2018 together with historical use of ammonia scrubbers in the area near AGW20.

Remediation well AGW17 was installed in the suspected possible source of historical ammonium ground contamination. This well was not operation in June 2019 due to an electrical connection fault which was fixed on 10th July 2019. Remediation wells AGW19 and AGW20 were commissioned on-site in October 2018 in the area downgradient of this suspected historical ammonium source area. Recent investigations by GSK revealed that there were ammonia scrubbers in operation in the area west of AGW20 between 1995 and 2001.

AGW14 was installed in August 2016 to determine if abstraction in the bedrock would reduce the groundwater ammonia concentrations. The other groundwater abstraction wells AGW13 and AGW16 were used to remediate the 2016 solvent/alcohol contamination which is largely remediated in the bedrock aquifer with no current rebound observed since the turning off of pumps in October 2017. AGW5 was a historical remediation well which has been activated to assist in reducing ammonium concentrations historically.

In June 2018 there was an anomalous elevated detection of THF (7.603mg/l) and ammonium in AGW11 (57.88mg/l) and an increase in ammonium (23.68mg/l) in pumping well AGW14. Verde understand a suspected potential source of ammonia in the groundwater in the northern region of the site maybe from the Biological Treatment Plant (Tank 1805B), which contains mostly water containing ammonium chloride and THF in low concentrations and is adjacent to AGW11. Verde recommended that a series of weekly monitoring rounds of wells in the area were undertaken to confirm the potential source from the Bioplant together with a site investigation which involved the drilling of boreholes, soil sampling, monitoring well installations and groundwater sampling. Results indicated that there was some localised shallow ammonium contamination in the vicinity of the bioplant. The DQRA on ammonium was subsequently revised in September 2018 with respect to current ammonia concentrations and trends on-site.

Wells surrounding the bioplant including; AGW3, AGW4, AGW14 and compliance point were sampled a further two times in June 2018 as presented in the attached tables. Ammonium remains elevated in these pumping wells at concentrations seen previously with a decrease observed in the compliance point. Sampling works of the background ammonium concentrations in the harbour waters are similar to or more elevated than those being detected at the compliance point.

3.3 Perimeter Wells & Downgradient Compliance Point Results Summary

In June 2019, THF was undetected in perimeter monitoring wells namely: AGW1(a), AGW2, and AGW18 to the west, AGW6 and AGW8 to the south.

To the north of the site, trace levels of THF were detected in AGW3 and AGW4 in the June 2019 quarterly monitoring round.

There was no detection of VOCs or alcohols in the downgradient compliance point similar to previous monitoring rounds.

3.4 Field Water Quality Readings

Field water quality readings of pH and temperature were within the normal ranges for what is usually detected as part of the IE groundwater monitoring programme on-site. The EC readings have increased in the downgradient monitoring wells AGW3 and AGW4 since operation of the pumping from these wells. Both of these wells are likely to be abstracting more brackish groundwater given their location near the coastline. In June 2019 the EC in

monitoring well AGW11a remained elevated. EC readings were also elevated in the new pumping wells AGW19 & AGW20 which are influenced by brackish groundwater influence in this area of the site. The low to negative redox readings and low dissolved oxygen concentrations indicate reducing groundwater conditions in the bedrock aquifer.

4. SUMMARY & CONCLUSIONS

The June 2019 quarterly monitoring round consisted of sampling 19 bedrock and six perched groundwater monitoring wells together with the compliance point on the foreshore to the north of the site and a duplicate, as agreed with the EPA. This includes monitoring of bedrock remediation wells (AGW19 & AGW20) in the Bioplant area. Recent investigations by GSK revealed that there were ammonia scrubbers in operation in the area west of AGW20 between 1995 and 2001 and therefore a likely source of historical ammonium contamination.

The remediation objectives in relation to solvent/alcohol contamination incident were to remediate the perched groundwater in the subsoils and underlying bedrock aquifer in the vicinity of the source area identified at Production Building 6. This groundwater pump & treat work has been successful in remediating the bedrock aquifer with no exceedance of the applicable RTCs in June 2019. There was a localised toluene exceedance in perched groundwater in well MW204.

Currently six of the remediation wells on-site are being used to assist in the remediation of elevated ammonium in the northern region of the site.

Following a meeting a EPA office in May 2019 it was agreed that the groundwater remediation programme in relation to ammonium going forward is to focus on long term pump & treat operation of the existing remediation wells on-site and discontinue the ORC advanced in-situ trial. A water level mass balance is being prepared to examine the effectiveness of the active pump & treat groundwater containment system operating on-site.

The 2018 sampling works of the background ammonium concentrations in the harbour waters are similar to or more elevated than the concentrations being detected at the compliance point.

Toluene was undetected in the bedrock monitoring wells in June 2019. There was elevated toluene detected in the localised overburden perched groundwater of MW204 as seen historically in this well.

Alcohols remain undetected in all bedrock aquifer wells and perched groundwater monitoring wells on site. The source of these alcohols is therefore remediated across the site.

In June 2019 there was no detection of THF above the RTC value. Currently there are slightly elevated THF concentrations in the bedrock monitoring wells AGW16 (0.617mg/l) and in the perched groundwater of MW204 (0.166mg/l). Both AGW16 and MW204 are showing an overall continuous decline from more elevated 2016 concentrations.

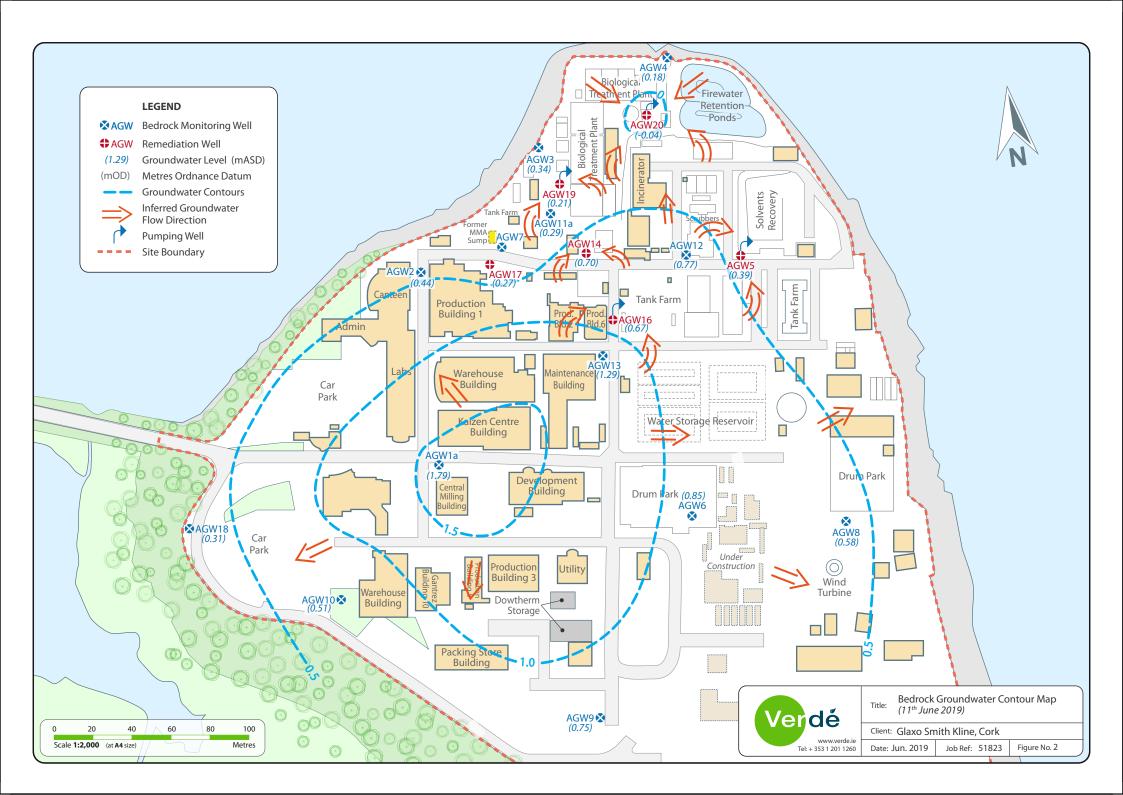
In June 2019 there was an anomalously high detection of THF (1.271mg/l) in the bedrock monitoring well AGW5 at a level which had not been detected in this well previously. Further sampling in June and July 2019 showed a declining trend. As this is an active pumping well further decrease is likely given that there is no known new source of THF in the area.

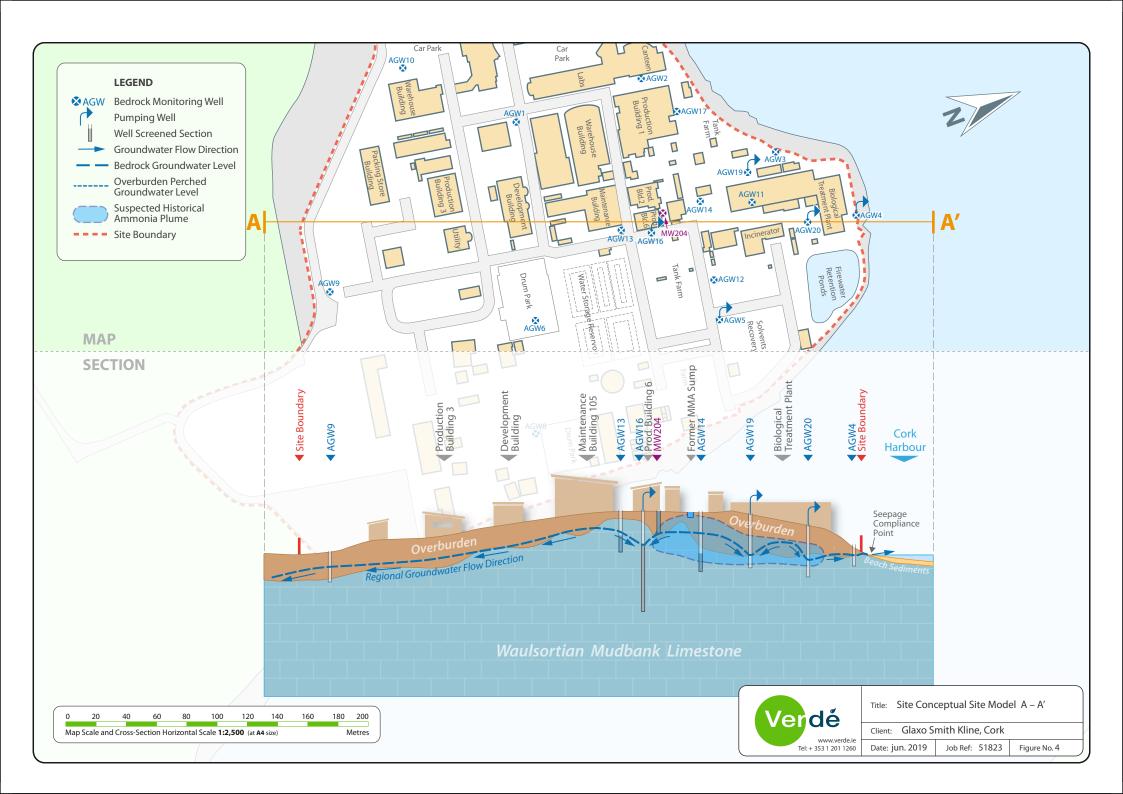
In the June 2019 monitoring round elevated ammonium concentrations were detected in most groundwater wells on-site apart from wells: AGW1(a), AGW6 and AGW8 which are located downgradient of the production area on-site.

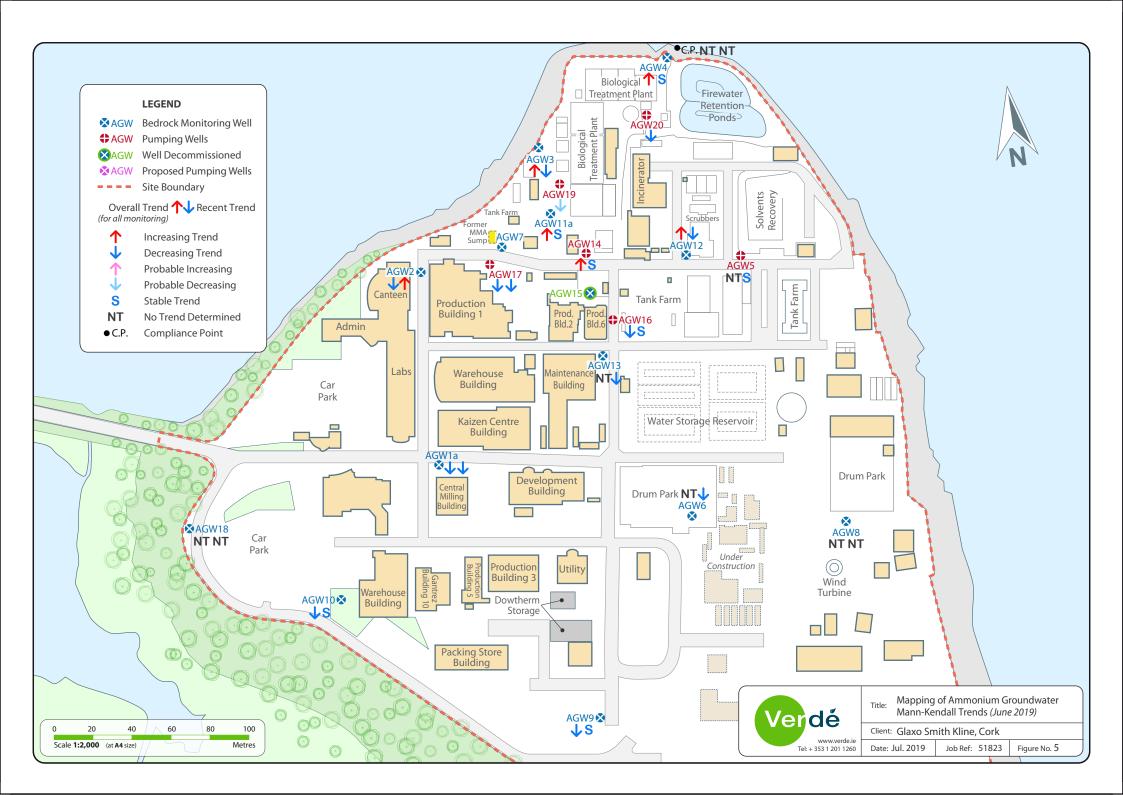
Statistical analysis of the ammonium concentrations in the monitoring and remediation wells

on-site shows a largely stable to decreasing trend for ammonium across the site. The most elevated ammonium concentration on-site are present in the downgradient region of the Bioplant in remediation wells AGW19 & AGW20. This is thought to be related to a historical source in the area from former ammonia scrubbers in this area of the site.

5. RECOMMENDATIONS

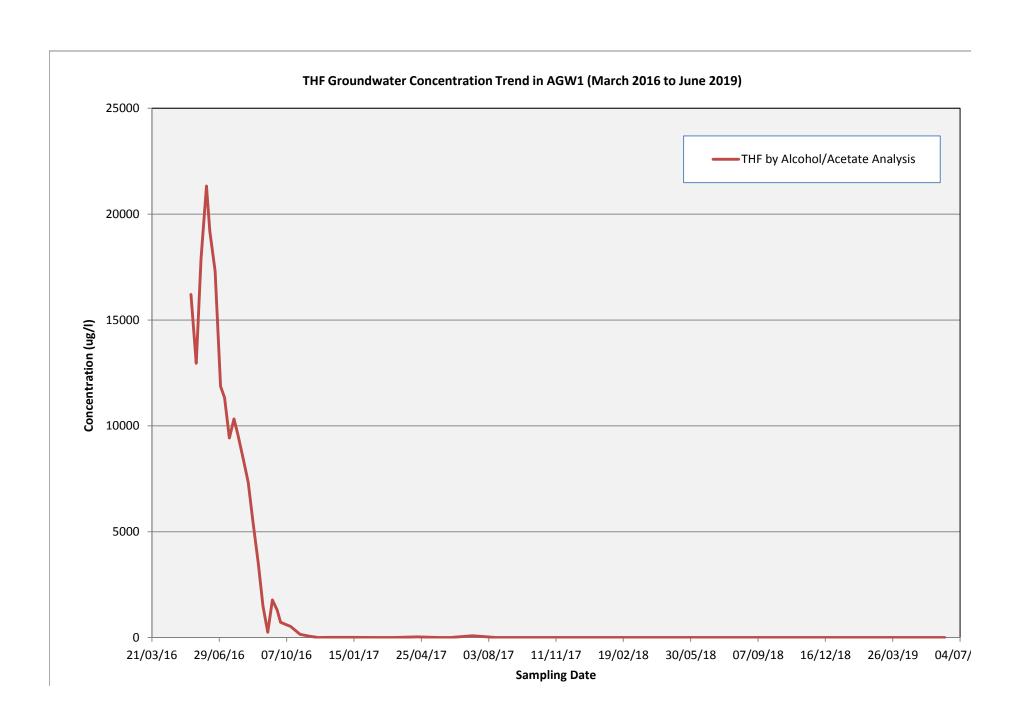

- Continue with operation of groundwater remediation wells (AGW5, AGW14, AGW16, AGW17, AGW19 and AGW20) and monitor trends in the ammonium on-site via routine groundwater monitoring works.
- Implement measures to allow more accurate logging of flow rates and pumping regime from the six remediation wells on-site to ensure effective operation. Sustainable pumping rates as obtained from pumping tests on the abstraction wells should be maintained to avoid over abstraction and potential saline intrusion impacts to the bedrock aquifer.
- Complete the water mass balance of water input (recharge) and output (remediation wells) from the perched and bedrock aquifers beneath the GSK site to determine long term abstraction sustainability as agreed with the EPA.
- Undertake further groundwater monitoring of ammonium and electrical conductivity on the most contaminated remediation well AGW20 at both high and low tidal ranges to assess if the abstraction rate from this well can be increased without causing saline intrusion effects in this northern area of the site.
- Continue with quarterly monitoring of groundwater monitoring and remediation wells together with selected perched groundwater monitoring wells.
- Obtain a further groundwater sample from AGW5 in July and August 2019 to confirm the declining trend in THF in this monitoring well.


FIGURES


Quarterly Monitoring Report Verdé Ref: 51823

TABLES

Quarterly Monitoring Report Verdé Ref: 51823


Table 1: GSK - Additional Groundwater and Surface Water Sample Analysis Inventory

Sampling Date	Groundwater Well Name	VOCs + TICs	SVOCs + TICs	Alcohols	ŦF	Full IED Suite	Ammonia	Phenols by HPLC	Metals & Ions	Hydrocarbons	Carbon Disulphide	Faecal Coliforms & E.Coli
6th January 16	AGW13	Х	х									
25th January	AGW13	х										
15th February	AGW13	Х										
24th February	AGW13	х		x								
24th February	AGW5 & 14						x					
29th February	AGW1, 2, 5, 6, 7, 12, 13, 14	Х		x								
29th February	AGW5 & 14						x					
15th March	AGW1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14	х	х	х		х	х					
22nd March	AGW1, 13, 14	Х	х	х								
22nd March	AGW5, AGW13 & 14						x					
31st March	AGW1, 13, 14, Sump, Seep1		х	х			х					
31st March	Seep 2, Outfall, Harbour						х					
1st April	MW208 (Perched Gw)	Х	х	х			х					
7th April	AGW1, 13, 14 (Perched Gw MW204)	х	х	х			х					
14th April	AGW1, 13, 14	Х	х	x			x					
21st April	AGW1, 14 (Perched Gw MW215, 217)	х	х	х			х					
21st April	AGW13 (Perched Gw MW215, 217)							х				
28th April	AGW1, 13, 14, 15 (AGW5 ammonia)	х	х	х			х	х				
4th May	AGW1, 13, 14 (AGW5, 14 ammonia)	х	х	х			х	х				
4th May	AGW16, 17	х	х	х			х	х	х	х		
13th May	AGW1, 13, 14 (ammonia in AGW14 only)	х	х	х			х	х				
18th May	Full monitoring round of 4 perched and 18 bedrock wells	x	х	х	х		х	х				
19th May		х	x	x	x		x	x				
26th May	AGW1, 13, 14 (ammonia in AGW14 only)	x	х	х	х		х	х				
2nd June	AGW1, 13, 14 (ammonia in AGW14 only)	х	х	х	х		х	x				
10th June	AGW1, 13, 14 (ammonia in AGW14 only)	х	х	х	х		х	х				
15th June	AGW1, 13, 14 (ammonia in AGW14	х	х	х	х		х	х				
23th June	AGW1, 13, 14, (ammonia in AGW14 only)	х	х	х	х		х	х				
24th June	AGW16	х	х	х	х		х	х				
1st July	AGW1, 13, 14, 16 (ammonia in AGW14 only)	х	х	х	х		х	х				
7th July	AGW1, 13, 16, (AGW9 TPH only)	х		х	х			х		х		
14th July	AGW1, 13, 14, 16, (ammonia in AGW14 only)	х		х	х		х	х				
24th July	AGW14 Only) AGW1, 13, 14, 16 (ammonia in AGW14 only)	х		х	х		х	х				
27th July	Full monitoring round of 2 perched,	х	х	х	х		х	х				
28th July	17 bedrock wells and seepage point + duplicate	х	х	х	х		х	х				
5th August	AGW1, 13, 14, 16	х		х	х			x				
11th August	AGW1, 13, 14, 16	х		х	х			х				
18th August	AGW1, 13, 14, 16	х		х	х			х			х	
25th August	Full monitoring round of 4 perched, 17 bedrock wells and seepage point +	х		х	х			х				
26th August 16	duplicate	х		х	х			х				

Table 1: GSK - Additional Groundwater and Surface Water Sample Analysis Inventory

Sampling Date	Groundwater Well Name	VOCs + TICs	SVOCs + TICs	Alcohols	ŦF	Full IED Suite	Ammonia	Phenols by HPLC	Metals & Ions	Hydrocarbons	Carbon Disulphide	Faecal Coliforms & E.Coli
2nd September	AGW1, 13, 14, 16	×	72	χ	×	ıπ	₹	x	Σ	Í	ర	
9th September	AGW1, 13, 14, 16	х		х	х			х				
16th September	AGW1, 13, 14, 16	х		х	х			х				
23rd September	AGW1, 13, 14, 16	х		х	х			х				
29th September	Full monitoring round of 3 perched, 16 bedrock wells and seepage point + duplicate	х	х	х	х	х	х	х				х
13th October	Foul Drain near AGW13	х		х	х							
13th October	AGW1, 13, 14, 16 (Bacti AGW13, 16)	х		х	х			х				х
27th October	Full monitoring round of 3 perched, 17 bedrock wells and seepage point + duplicate	x		х	х		х	х				
27th October	Foul Drain near AGW13	х		х	х							
10th November	AGW1, 13, 14, 16	х		х	х			х				
23rd November	Full monitoring round of 3 perched, 17 bedrock wells and seepage point + duplicate	х		х	х		х	х				
14th December	Full monitoring round of 3 perched, 16 bedrock wells and seepage point + duplicate	x		х	х		х	х				
16th January 2017	Full monitoring round of 3 perched, 17 bedrock wells and seepage point + duplicate	х		х	х		х	х				
15th February 2017	Full monitoring round of 3 perched, 17 bedrock wells and seepage point + duplicate	x		х	х		х	х				
14th March 2017	Full monitoring round of 3 perched, 17 bedrock wells and seepage point +	Х	х	х	х	х	х	х				х
19th April 2017	Reduced monitoring round of 1 perched & 3 bedrock wells	x		×	х		х	x				
22nd May 2017	Reduced monitoring round of 1 perched, 3 bedrock wells and seepage point + duplicate	x		х	х		х	х				
6th/7th June 2017	Quarterly monitoring round of 3 perched, 17 bedrock wells and seepage point + duplicate	х		х	х		х	х				
10th July 2017	Reduced monitoring round of 1 perched, 3 bedrock wells and seepage point + duplicate	x		х	х		х	х				
14th August 2017	Reduced monitoring round of 1 perched, 3 bedrock wells and seepage point + duplicate	x		х	х		х	х				
12th/14th September 2017	Quarterly monitoring round of 3 perched, 16 bedrock wells and seepage point + duplicate	x		х	х		х	х				
24th October 2017	Reduced monitoring round of 1 perched, 3 bedrock wells and seepage point + duplicate	x		х	х		х	х				
15th/20th November 2017	Quarterly monitoring round of 3 perched, 16 bedrock wells and seepage point + duplicate + (TPH AGW4 & Bacti AGW10)	x		x	х		х	х		×		x
7th March 2018	Quarterly monitoring round of 3 perched, 16 bedrock wells and seepage point + duplicate	x		х	х		х	х		х		
5th/ 6th June 2018	Quarterly monitoring round of 3 perched, 16 bedrock wells and seepage point + duplicate	x		х	х		х	х		х		
18th June 2018	Weekly monitoring of AGW3, 4, 14 and compliance point			х	х		х					
28th June 2018	Weekly monitoring of AGW3, 4, 14 and compliance point			х	х		х					
28th September 2018	Quarterly monitoring round of 3 perched, 17 bedrock wells and seepage point + duplicate	x		х	х		х	х				
3rd/4th December 2018	Quarterly monitoring round of 6 perched, 19 bedrock wells and seepage point + duplicate	x		х	х		х	х				
12th/13th March 2019	Quarterly monitoring round of 6 perched, 19 bedrock wells and seepage point + duplicate	x		х	х		х	х				
11th June 2019	Quarterly monitoring round of 6 perched, 19 bedrock wells and seepage point + duplicate	x		х	х		х	х				
21st June 2019	AGW5 - Repeat sample for THF				х							
10th July 2019	AGW5 - Repeat sample for THF				х							

VOC (ug/l)	29/02/16	1	I	31/03/16							Grou	AGW1	02/06/16 :	10/06/16 1			/07/16 07/0:					11/08/16	RTC	IGV	TSV	Gw Reg
VOC (IIS/I) Viethyl Tertiary Butyl Ether (MTBE) Benzene Toluene Xvienes (meta & para)	29/02/16 1,623	15/03/16 < <	22/03/16 < <	\$1/03/16 < <	< < <	< < < <	< c c c c c c c c c c c c c c c c c c c	0.1 <	< < <	< < <	18/05/16 < <	26/U5/16 < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	5/06/16 2 < < <	3/06/16 D1, < < <	< < < < <	(16 14/07 ((16 21/07/1 < <	5 27/07/16 < <	< < < < < < < < < < < < < < < < < < <	11/08/16 < <	16,600	30 1.0 10 10	30 1.0	10 0.75 525
Xylenes (meta & para) O-Xylene Chloromethane Dichloromethane (DCM) 2-Chlorotoluene	< 12 14	< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	< < <	< < <	< < <	< < <	< < <	< <	< < < < < < < < < < < < < < < < < < <	< <	< <	< < <	13,900	10 - - 10		
2-Chlorotoluene TIC3 Tetrahydrofuran (THF) Acetone	<	3598	3581	<	1777	1568	1579	1530	1028	1156	1286	1096	1109	< <	1391	< -	< <	<	<	<	<	<	9,310 1,000,000			115
Dimethyl sulfide Cyclic octaatomic sulfur SVOCs (µg/l)	< <	< <	<		<	< <	<	<	<	<	<	< <	< .	< <	<	< <		<		<		< <	-			
2-Methylphenol 4-Methylphenol Phenol Phenols (mg/l)		<	<	<	< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	< .			<			20,600	0.5	-	
Phenol Total Speciated Phenols HPLC Alcohols (HP/I) Methyl Alcohol (Methanol)						-		< <	< <	< <	< <	< <	< <	< <	< <	< <		<	< <	<	<	<	20.6	0.0005		
Methyl Alcohol (Methanol) Ethyl Alcohol (Ethanol) Isopropyl Alcohol n-Propyl Alcohol Tetrahydrofuran (THF)	441	< <	< <	< < <	< <	< <	< <	< <	< <	< <	< < < 16205	< < 12957	< < < < < < < < < < 17899	< c	<	< c	< < < < < < < < < < < < < < < < < < <	< < < < 4 942	4 10327	9564	< < < 8254	< < < 7329	1,000,000 1,000,000 - 9,310			111
Field Water Quality Readings pH Temp (°C)	7.49 13.3 714	7.59 13.1 503	7.75 13.2 514	7.67 14 663	8.08 13 515	7.79	7.72 12.9	8.2 12.7 570	8.64 12.9 564	7.33 13.3	7.94 13.1 503	12957	8.05 13	7.88 14.2	7.3 13.4	7.55	B.16 7.	7.3	7.74	8.21	8.24 15.3	7.41 14.7	9,310	≥6.5-9.5≤ 25	≥6.5-9.5≤	
EC (uS/cm) DO (me/l) Redox (mV)	714	503 -40.5	514 .62	663 4.38 -58	515 - -20	664	12.9 571 7.52 -38	570 6.22 -80	9.71 -72.6	596 3.63 105	503 - 42		491 9.42	525 - 117 Clouldy	501 1.62 501	571	13.7 10 550 54 - 2.7 -33 -8	501	501	-90.2	488 - -13.5	582 - -24	- :	1000	2500	800-1
Observations	Cloudy, grey, slight chemical	Brown silty water, no odour		Brown silty water, no odour	water, no	Brown silty, slight organic odour	Brown silty, slight organic odour	organic	Brown silty, slight chemical/	water, no	Brown silty water, no	Brown silty water, no	Brown	light brown/ Cl	organic i	ear, mild organic odour	Clear, sar, no organ dour chem	: & sligh	t Clear, no ic odour	Clear, no odour	Clear, slight organic odour	Clear, slight organic/	N/A	N/A	N/A	N/A
	chemical	odour	odour	Oddu	odour	odour	odour	odour	organic odour	odour	odour	odour undwater Re		solvent	ododi	ododi	odo	r odou	r		odour	chemical odour				
VOC (µg/I) lethyl Tertiary Butyl Ether (MTBE)	18/08/16	26/08/16	02/09/16	09/09/16	16/09/16	23/09/16	28/09/16 0.2	13/10/16	27/10/16 0.2	10/11/16	23/11/16	AGW1 14/12/16	16/01/17 :	15/02/17 1	4/03/17 1 1.7	9/04/17 22	/05/17 07/00	/17 10/07	/17 14/08/1	7 14/09/17	24/10/17	20/11/17	RTC	IGV 30	TSV	Gw R
Benzene Toluene Xylenes (meta & para) O-Xylene	< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	< < <	< <	< c	< <	< <	< <	16,600	1.0 10 10	1.0	10 0.7 52
Chloromethane Dichloromethane (DCM) 2-Chlorotoluene		< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	< < <	< <	< < <	< <	< <	< < < < < < < < < < < < < < < < < < <	< <	< <	< <	13,900	10		-
T(<5 (H7/I)) Tetrahydrofuran (THF) Acetone Dimethyl sulfide	< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	< .	< <	< <	< <	< <	< <	< <	< <	9,310 1,000,000	- 1	- :	11
Cyclic octaatomic sulfur Benzene, pentafluoro- SVOCs (µg/l)		<	<	<	810	< <	<	< <	<	<	< <	< <	< <	< <	< <	< <		<	<	< <	<	< <	-		-	
2-Methylphenol 4-Methylphenol Phenol Phenols (mg/l)							< <								< <								20,600	0.5	- :	
Phenol Total Speciated Phenols HPLC Alcohols (Hg/I) Methyl Alcohol (Methanol) Ethyl Alcohol (Ethanol)	0.01	< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	20.6	0.0005	:	
Ethyl Alcohol (Ethanol) Isopropyl Alcohol n-Propyl Alcohol Tetrahydrofuran (THF)	<		-	< .	<	<	<		< <	<	-		<	< .	<	< .						-	1,000,000 1,000,000			
	<	<	<	<		<	<	<	<			<	<	<	<	`			- <	<	<	<	1,000,000			
Field Water Quality Readings	5496 7.93	3493 8.65	1494 8.26	250 8.51	1781 8.33	7.08	724	528 7.17	7.44	63 7.57	8.62	7 8.48	7.22	7.62	6.85	7.55	7.73 7.	7.2	2.06	7.34	7.48	7.47	9,310	26.5-9.54	26.5-9.54	11
Tetrahydrofuran (THF) Field Water Quality Readings oH Temo (°C) EC (uS/cm) DO (me/l) Redox (mV)	7.00	8.65 15.1 375.3	8.26 14.9 404			117			7.44 14.8 538		8.62 11.2 188 11.9	8.48 13.4 415.6 6.63 28.5	7.22 14.1 690 0.93	1.5/	6.85 14.1 479.9 1.36 34.1	7.55 13.3 754 5.07	13.1 13 632 59 4.99 4.4 154.9 -64	7.2 ² ! 14.1 361 1 7.4 ² 8 59.1	8.06 14.7 388 5.12	7.34 14 279 5.05	7.48 14.4 620 6.63 146.0	7.47 14.4 239 6.63 -8.7	1,000,000	25 1000	≥6.5-9.5≤ 2500	11:
Field Water Quality Readings DH Temp (*C) EC (uS/cm) DO (mg/l)	7.93 14.5 422 40.1 Clear, mild organic	8.65 15.1 375.3	8.26 14.9 404	8.51 14.9 623 1.83	8.33 15.1 563 3.38	7.08 15 615	7.38 15 576 7.4	7.17 14.7 498 3.95	7.44 14.8 538 4.9	7.57 13.7 468 8.19 28 Silty light brown, no	-25 Light brown, no	13.4 415.6 6.63 28.5 Cloudy white, very slight	0.93 -44.5 Clear, very slight (chemical	1.37 -67 Clear, No C	34.1 lear, No odour be	7.55 13.3 754 5.07 32.8 Cloudy, grey/ own, no	13.1 13 632 59 4.99 4.4 154.9 64 Gre irey/ brown wn, no slig	7.2 ! 14.1 36.1 1 7.4 8 59.1 / dint, Grey	8 8.06 8 14.7 388 9 5.12 9 102.0 / Silty brown, n	5.05 -33.0 Silty brown slight organic	14.4 620 6.63 146.0 Brown tint	-8.7	1,000,000	25		
Field Water Quality Readings oH Temo (*C) EC (uS/cm) DO (me/l) Redox (mV)	7.93 14.5 422 40.1	8.65 15.1 375.3 -16.9	8.26 14.9 404 9.3 Clear, no odour	8.51 14.9 623 1.83 -12.5 Clear, no odour	8.33 15.1 563 3.38 -109 Clear, no odour	7.08 15 615 	7.38 15 576 7.4 -66	7.17 14.7 498 3.95 -64	7.44 14.8 538 4.9 -81	7.57 13.7 468 8.19 28	-25	13.4 415.6 6.63 28.5 Cloudy white.	0.93 -44.5 Clear, very slight (1.37 -67 Clear, No C	34.1 lear, No odour be	7.55 13.3 754 5.07 32.8 Sloudy, grey/ G	13.1 13 632 59 4.99 4.4 154.9 -64 Gre	7.2/ ! 14.1 36: 1 7.4/ 8 59.1 / dint, Grey t brown ic no odd	8 8.06 8 14.7 388 9 5.12 9 102.0 / Silty brown, n	279 5.05 -33.0 Silty brown	14.4 620 6.63 146.0 Brown tint	6.63 -8.7 , Brown tint,	1,000,000 9,310 - - - - - - - N/A	25 1000	2500	800-1
Field Water Quality Readings H Temo (°C) EC (u.s/m) DO (ma/l) Redox (mv) Observations	7.93 14.5 422 40.1 Clear, mild organic odour	8.65 15.1 375.3 -16.9	8.26 14.9 404 9.3 Clear, no odour	8.51 14.9 623 1.83 -12.5 Clear, no odour	8.33 15.1 563 3.38 -109 Clear, no odour	7.08 15 615 	7.38 15 576 7.4 -66	7.17 14.7 498 3.95 -64	7.44 14.8 538 4.9 -81	7.57 13.7 468 8.19 28 Silty light brown, no	-25 Light brown, no	13.4 415.6 6.63 28.5 Cloudy white, very slight chemical	0.93 -44.5 Clear, very slight (chemical	1.37 -67 Clear, No C	34.1 lear, No odour be	7.55 13.3 754 5.07 32.8 Cloudy, grey/ own, no	13.1 13 632 59 4.99 4.4 154.9 64 Gre irey/ brown wn, no slig dour orga	7.2/ ! 14.1 36: 1 7.4/ 8 59.1 / dint, Grey t brown ic no odd	8 8.06 8 14.7 388 9 5.12 9 102.0 / Silty brown, n	5.05 -33.0 Silty brown slight organic	14.4 620 6.63 146.0 Brown tint	6.63 -8.7 , Brown tint,	9,310	25 1000 	. 2500 	800-1 N/
Ridd Water Quality Readings Here 1 Tense 1 Te	7.93 14.5 422 40.1 Clear, mild organic odour	8.65 15.1 375.3 -16.9 Clear, no odour	8.26 14.9 404 9.3 Clear, no odour	8.51 14.9 623 1.83 -12.5 Clear, no odour	8.33 15.1 563 3.38 -109 Clear, no odour	7.08 15 615 	7.38 15 576 7.4 -66	7.17 14.7 498 3.95 -64	7.44 14.8 538 4.9 -81	7.57 13.7 468 8.19 28 Silty light brown, no	-25 Light brown, no	13.4 415.6 6.63 28.5 Cloudy white, very slight chemical	0.93 -44.5 Clear, very slight (chemical	1.37 -67 Clear, No C	34.1 lear, No odour be	7.55 13.3 754 5.07 32.8 Cloudy, grey/ own, no	13.1 13 632 59 4.99 4.4 154.9 64 Gre irey/ brown wn, no slig dour orga	7.2/ ! 14.1 36: 1 7.4/ 8 59.1 / dint, Grey t brown ic no odd	8 8.06 8 14.7 388 9 5.12 9 102.0 / Silty brown, n	5.05 -33.0 Silty brown slight organic	14.4 620 6.63 146.0 Brown tint	6.63 -8.7 , Brown tint,	1,000,000 9,310 - - - - - - - N/A	25 1000	2500	800-1
Filled Water Coastly Readings HT Terms (**) Femal (**) Do (mar/t) Redox (min/t) Redox (min/t) Sethy Terms (**) Work (**) Note (**) Redox (min/t) Sethy Terms (**) Reading (**) Sethy Terms (**) Reading (**) Reading (**) Tokener (**)	7.93 14.5 422 40.1 Clear, mild organic odour	8.65 15.1 375.3 -16.9 Clear, no odour	8.26 14.9 404 9.3 Clear, no odour	8.51 14.9 623 1.83 -12.5 Clear, no odour	8.33 15.1 563 3.38 -109 Clear, no odour	7.08 15 615 Clear, no odour	7.38 15 576 7.4 -66	7.17 14.7 498 3.95 -64	7.44 14.8 538 4.9 -81	7.57 13.7 468 8.19 28 Silty light brown, no	-25 Light brown, no	13.4 415.6 6.63 28.5 Cloudy white, very slight chemical	0.93 -44.5 Clear, very slight (chemical	1.37 -67 Clear, No C	34.1 lear, No odour be	7.55 13.3 754 5.07 32.8 Cloudy, grey/ own, no	13.1 13 632 59 4.99 4.4 154.9 64 Gre irey/ brown wn, no slig dour orga	7.2/ ! 14.1 36: 1 7.4/ 8 59.1 / dint, Grey t brown ic no odd	8 8.06 8 14.7 388 9 5.12 9 102.0 / Silty brown, n	5.05 -33.0 Silty brown slight organic	14.4 620 6.63 146.0 Brown tint	6.63 -8.7 , Brown tint,	1,000,000 9,310 - - - - - - - - - - - - - - - - - - -	25 1000 - - - N/A IGV 30 1.0	. 2500 	800-3 N/
Field Water Coastly Readings at 10 BC (LaS/cm) BC (LaS/cm) Bo (mm/l) Redox (mW) Observations VOA(RFJII) Local (MTBI) Redox (mW) Observations VOA(RFJII) Local (MTBI) Redox (mW) Observations VOA(RFJII) Local (MTBI) Redox (MTBI) Local (MTBI) Redox (MTBI) Local (MTBI) Redox (MTBI)	7.93 14.5 422 40.1 Clear, mild organic odour	8.65 15.1 375.3 -16.9 Clear, no odour	8.26 14.9 404 9.3 Clear, no odour	8.51 14.9 623 1.83 -12.5 Clear, no odour	8.33 15.1 5.63 3.38 -109 Clear, no odour	7.08 15 615 	7.38 15 576 7.4 -66	7.17 14.7 498 3.95 -64	7.44 14.8 538 4.9 -81	7.57 13.7 468 8.19 28 Silty light brown, no	-25 Light brown, no	13.4 415.6 6.63 28.5 Cloudy white, very slight chemical	0.93 -44.5 Clear, very slight (chemical	1.37 -67 Clear, No C	34.1 lear, No odour be	7.55 13.3 754 5.07 32.8 Cloudy, grey/ own, no	13.1 13 632 59 4.99 4.4 154.9 64 Gre irey/ brown wn, no slig dour orga	7.2/ ! 14.1 36: 1 7.4/ 8 59.1 / dint, Grey t brown ic no odd	8 8.06 8 14.7 388 9 5.12 9 102.0 / Silty brown, n	5.05 -33.0 Silty brown slight organic	14.4 620 6.63 146.0 Brown tint	6.63 -8.7 , Brown tint,	1,000,000 9,310	25 1000 N/A IGV 30 1.0 10	. 2500 	S00-3 N/ Gw R 10 0.3 52
Field Water Quality Readings H Frem Y Frem	7.93 14.5 422 40.1 Clear, mild organic odour	8.65 15.1 375.3 -16.9 Clear, no odour	8.26 14.9 404 9.3 Clear, no odour	8.51 14.9 623 1.83 -12.5 Clear, no odour	8.33 15.1 5.63 3.38 -109 Clear, no odour	7.08 15 615	7.38 15 576 7.4 -66	7.17 14.7 498 3.95 -64	7.44 14.8 538 4.9 -81	7.57 13.7 468 8.19 28 Silty light brown, no	-25 Light brown, no	13.4 415.6 6.63 28.5 Cloudy white, very slight chemical	0.93 -44.5 Clear, very slight (chemical	1.37 -67 Clear, No C	34.1 lear, No odour be	7.55 13.3 754 5.07 32.8 Cloudy, grey/ own, no	13.1 13 632 59 4.99 4.4 154.9 64 Gre irey/ brown wn, no slig dour orga	7.2/ ! 14.1 36: 1 7.4/ 8 59.1 / dint, Grey t brown ic no odd	8 8.06 8 14.7 388 9 5.12 9 102.0 / Silty brown, n	5.05 -33.0 Silty brown slight organic	14.4 620 6.63 146.0 Brown tint	6.63 -8.7 , Brown tint,	1,000,000	25 1000 N/A IGV 30 1.0 10	. 2500 	S00-3 N/ Gw R 10 0.3 52
Reid Water Quality Readings 4 H (1) 1 C (1) 1	7.93 14.5 422 40.1 Clear, mild organic odour	8.65 15.1 375.3 -16.9 Clear, no odour	8.26 14.9 404 9.3 Clear, no odour	8.51 14.9 623 1.83 -12.5 Clear, no odour	8.33 15.1 5.63 3.38 -109 Clear, no odour	7.08 15 615	7.38 15 576 7.4 -66	7.17 14.7 498 3.95 -64	7.44 14.8 538 4.9 -81	7.57 13.7 468 8.19 28 Silty light brown, no	-25 Light brown, no	13.4 415.6 6.63 28.5 Cloudy white, very slight chemical	0.93 -44.5 Clear, very slight (chemical	1.37 -67 Clear, No C	34.1 lear, No odour be	7.55 13.3 754 5.07 32.8 Cloudy, grey/ own, no	13.1 13 632 59 4.99 4.4 154.9 64 Gre irey/ brown wn, no slig dour orga	7.2/ ! 14.1 36: 1 7.4/ 8 59.1 / dint, Grey t brown ic no odd	8 8.06 8 14.7 388 9 5.12 9 102.0 / Silty brown, n	5.05 -33.0 Silty brown slight organic	14.4 620 6.63 146.0 Brown tint	6.63 -8.7 , Brown tint,	1,000,000 9,310 1,000,000 1,000,000 1,000,000 1,000,000	25 25 1000	. 2500 	800- N, Gw F
Refed Water Quality Readings APT CT ST ST ST ST ST ST ST ST S	7.93 14.5 422 40.1 Clear, mild organic odour	8.65 15.1 375.3 -16.9 Clear, no odour	8.26 14.9 404 9.3 Clear, no odour	8.51 14.9 623 1.83 -12.5 Clear, no odour	8.33 15.1 5.63 3.38 -109 Clear, no odour	7.08 15 615	7.38 15 576 7.4 -66	7.17 14.7 498 3.95 -64	7.44 14.8 538 4.9 -81	7.57 13.7 468 8.19 28 Silty light brown, no	-25 Light brown, no	13.4 415.6 6.63 28.5 Cloudy white, very slight chemical	0.93 -44.5 Clear, very slight (chemical	1.37 -67 Clear, No C	34.1 lear, No odour be	7.55 13.3 754 5.07 32.8 Cloudy, grey/ own, no	13.1 13 632 59 4.99 4.4 154.9 64 Gre irey/ brown wn, no slig dour orga	7.2/ ! 14.1 36: 1 7.4/ 8 59.1 / dint, Grey t brown ic no odd	8 8.06 8 14.7 388 9 5.12 9 102.0 / Silty brown, n	5.05 -33.0 Silty brown slight organic	14.4 620 6.63 146.0 Brown tint	6.63 -8.7 , Brown tint,	1,000,000 9,310 1,000,000 1,000,000 1,000,000 1,000,000	25	. 2500 	S000- N Gw I J O. S
Reld Water Quality Readings H From You From	7.93 14.5 422 40.1 Clear, mild organic odour	8.65 15.1 375.3 -16.9 Clear, no odour	8.26 14.9 404 9.3 Clear, no odour	8.51 14.9 623 1.83 -12.5 Clear, no odour	8.33 15.1 5.63 3.38 -109 Clear, no odour	7.08 15 615	7.38 15 576 7.4 -66	7.17 14.7 498 3.95 -64	7.44 14.8 538 4.9 -81	7.57 13.7 468 8.19 28 Silty light brown, no	-25 Light brown, no	13.4 415.6 6.63 28.5 Cloudy white, very slight chemical	0.93 -44.5 Clear, very slight (chemical	1.37 -67 Clear, No C	34.1 lear, No odour be	7.55 13.3 754 5.07 32.8 Cloudy, grey/ own, no	13.1 13 632 59 4.99 4.4 154.9 64 Gre irey/ brown wn, no slig dour orga	7.2/ ! 14.1 36: 1 7.4/ 8 59.1 / dint, Grey t brown ic no odd	8 8.06 8 14.7 388 9 5.12 9 102.0 / Silty brown, n	5.05 -33.0 Silty brown slight organic	14.4 620 6.63 146.0 Brown tint	6.63 -8.7 , Brown tint,	1,000,000 9,310 1,000,000 N/A N/A N/A 10,600 11,000,000 1,000,000 1,000,000	25 25 1000	. 2500 	S00:
Field Water Quality Readings H C C Read Common Com	7.93 14.5 42.2 40.1 Glear, mild organic ordour A 10.7 27/23/45 40.2 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1	8.655 15.1 375.3 375.3 375.3 375.3 5	8.26 14.9 9.3 14.9 9.3 14.9 9.3 14.9 14.	8.51 14.9 623 1.81 1.91 1	8.33 151 151 1563 3.38 3.38 100 Clear, no odour 12/02/12 12/02/12 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7.08 15 615	7.38 15 576 7.4 -66	7.17 14.7 498 3.95 -64	7.44 14.8 538 4.9 -81	7.57 13.7 468 8.19 28 Silty light brown, no	-25 Light brown, no	13.4 415.6 6.63 28.5 Cloudy white, very slight chemical	0.93 -44.5 Clear, very slight (chemical	1.37 -67 Clear, No C	34.1 lear, No odour be	7.55 13.3 754 5.07 32.8 Cloudy, grey/ own, no	13.1 13 632 59 4.99 4.4 154.9 64 Gre irey/ brown wn, no slig dour orga	7.2/ ! 14.1 36: 1 7.4/ 8 59.1 / dint, Grey t brown ic no odd	8 8.06 8 14.7 388 9 5.12 9 102.0 / Silty brown, n	5.05 -33.0 Silty brown slight organic	14.4 620 6.63 146.0 Brown tint	6.63 -8.7 , Brown tint,	1,000,000 9,310 1,000,000 N/A N/A N/A 16,600 1,500,000 20,600 20,600	25 25 1000	. 2500 	S00:
Field Water Quality Readings H From Y C Observations From Y C Fro	7.93 14.5 422 - 40.1 Clear, middle organic ordour A A A A A A A A A A A A A A A A A A A	8.65 15.1 3.375.3 375.3 375.3 375.3 375.3 46.9	8.26 14.9 9.3 UCear, no odour Ucear, no odour 28000181 < < < < < < < < < < < < < < < < < <	8.51 14.9 623 1.383 1.483 Clear, no odour Clea	8.33 15:1 56:1 56:1 3.38 3.38 3.39 Clear, no odour odour 1) 1) 1/1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	7.08 15 15 1615	7.38 15 576 7.4 -66	7.17 14.7 498 3.95 -64	7.44 14.8 538 4.9 -81	7.57 13.7 468 8.19 28 Silty light brown, no	-25 Light brown, no	13.4 415.6 6.63 28.5 Cloudy white, very slight chemical	0.93 -44.5 Clear, very slight (chemical	1.37 -67 Clear, No C	34.1 lear, No odour be	7.55 13.3 754 5.07 32.8 Cloudy, grey/ own, no	13.1 13 632 59 4.99 4.4 154.9 64 Gre irey/ brown wn, no slig dour orga	7.2/ ! 14.1 36: 1 7.4/ 8 59.1 / dint, Grey t brown ic no odd	8 8.06 8 14.7 388 9 5.12 9 102.0 / Silty brown, n	5.05 -33.0 Silty brown slight organic	14.4 620 6.63 146.0 Brown tint	6.63 -8.7 , Brown tint,	1,000,000 9,310 1,000,000 N/A N/A N/A 10,600 11,000,000 1,000,000 1,000,000	25 25 1000	TSV TSV 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	800
ried Water Coulty Readings All Ferrar (Cr) Ferrar (Cr)	7.93 14.5 422 - 40.1 Clear, middle organic oddour organic oddour	8.655 15.1 375.3 275.3 276.9 2000073 2	8.26 14.9 9.3 Clear, no odour	8.51 14.9 623 1.383 1.483 Clear, no odour Clea	8.33 15.1 56.1 56.2 56.3 3.38 3.38 6.2 6.2 6.2 6.2 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3	7.08 15 615	7.38 15 576 7.4 -66	7.17 14.7 498 3.95 -64	7.44 14.8 538 4.9 -81	7.57 13.7 468 8.19 28 Silty light brown, no	-25 Light brown, no	13.4 415.6 6.63 28.5 Cloudy white, very slight chemical	0.93 -44.5 Clear, very slight (chemical	1.37 -67 Clear, No C	34.1 lear, No odour be	7.55 13.3 754 5.07 32.8 Cloudy, grey/ own, no	13.1 13 632 59 4.99 4.4 154.9 64 Gre irey/ brown wn, no slig dour orga	7.2/ ! 14.1 36: 1 7.4/ 8 59.1 / dint, Grey t brown ic no odd	8 8.06 8 14.7 388 9 5.12 9 102.0 / Silty brown, n	5.05 -33.0 Silty brown slight organic	14.4 620 6.63 146.0 Brown tint	6.63 -8.7 , Brown tint,	1,000,000 9,310 1,000,000 N/A N/A N/A 10,600 11,000,000 1,000,000 1,000,000	1000	7500	800-1 N/ Gw R 10 0.7 52

VOC (μg/l)											Ground	water Resul	ts (ug/I)												
	29/02/16	AGW2	18/0	Dup	27/07/16	25/09/16	29/00/16	27/10/16	22/11/16	14/12/16	16/01/17	15/02//17		AGW2	12/09/17 20/	1/17 07/02/1	9 ne/ne/19	29/00/19	02/12/19	12/02/10	11/06/10	RTC	IGV	TSV	Gw
thyl Tertiary Butyl Ether (MTBE)	< <	0.2	0.3	<	0.6	<	<	<	< <	<	<	<	< 14/05/17	<		.3 <	2.9	<	0.9	1.4	3.6	-	30	-	
Benzene Toluene	<	<u> </u>	<	<	<	<	<	<	<	<	<	<	<	<	<	< <		<	<	<	< <	16,600	1.0 10	1.0	+-
Xylenes (meta & para)	< <					-		-			-	-					-		-		-	10,000	10		+
O-Xylene	<		-	-			-			-			<	<	<		-	<	2		<		-		+
Ethylbenzene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	< <	<	<	<	<	<	-	10	-	Т
Chloromethane	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	< <	<	<	<	<	<	-	-	-	
Dichloromethane (DCM)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	< <	<	<	<	<	<	13,900	10	-	_
2-Chlorotoluene TICs	_ <	_ <		<	<	<	<	<	<	<	<	<	<	<	<	< <	<	<	<	<	<		-		
Tetrahydrofuran (THF)	<	<	_	<	<	<	<	<	<	<	<	<	<	<	<		<	<	<	<	<	9,310			7
Acetone	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	< <	<	<	<	<	<	1,000,000	-	-	$^{+}$
Dimethyl sulfide	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	< <	<	<	<	<	<	-	-	-	Т
Cyclic octaatomic sulfur	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	< <	<	<	<	<	<	-	-	-	
SVOCs (μg/I)																									4
2-Methylphenol		<	<	<	<								<		<	<		<		<		-	-		+
4-Methylphenol Phenol		<	<	<	<								<		<	< <		<		<		20,600	0.5		+
Phenois (mg/l)																						20,600	0.5	سنس	
Phenol			<	<	<	<	<	<	<	<	<	<	<	<	<		<	<	<	<	<	20.6	0.0005		
Catechol			<	<	<	<	<	<	<	<	<	<	<	<	<	< <	<	<	<	<	<	-	-	-	$^{+}$
otal Speciated Phenols HPLC			<	<	<	<	<	<	<	<	<	<	<	<	<	< <	<	<	<	<	<	-	-	-	+
Alcohols (μg/l)																								1	Т
Methyl Alcohol (Methanol)		<	<	<	<	<	<	<	<	<	<	<	<	<	<	< <	<	<	<	<	<	1,000,000	-		Т
Ethyl Alcohol (Ethanol)		<	<	<	<	<	<	<	<	<	<	<	<	<	<	< <	<	<	<	<	<	1,000,000	-	-	1
Isopropyl Alcohol		<	<	<	<	<	<	<	<	<	<	<	<	<	<	< <	<	<	<	<	<	1,000,000	-		4
n-Propyl Alcohol Tetrahydrofuran (THF)		<	30	· ·	<		· ·	<	<	<	<	· <	· ·	<	<	·		<		<	< <	9,310	-		+
eld Water Quality Readings			50	<	· ·	· ·	<	<	<	<	<	· ·	<	<		. <	<	<		<		9,310			
nH	6.89	7.15	7.	.67	7.89	8.48	7.43	6.81	7.73	8.35	7.62	7.58	7	7.28	6.5 6	68 7.28	7.82	8.49	7.28	6.89	7	-	≥6.5-9.5≤	≥6.5-9.5≤	1
Temp (°C)	15.9	12.6		4.6	15.8	15.9	15.7	15	12.7	14.3	13.7	13.2	13.7	13.9	14.4 1	.8 12.4	14.2	14.7	14.2	13.1	15.3	-	25	-	+
EC (µS/cm)	384.9	255	3.	14	400.6	541	433	460	483	342.9	382	566	337.2	423.6	664 1	80 369.1	520	1212.1	710	586	1462	-	1000	2500	İ
DO (mg/l)	-	-		.57	-	-	8.23	3.1	3.49	5.63	2.68	3.14	2.18	2.29	-102 3	53 3.93	3.45	3.9	3.66	2.89	-	-	-	-	I
Redox (mV)	-	78	-6	65	-101.1	-88.1	-100	-85	-68	-58.5	-62.3	-69.6	-46.3	-105	3.27 -	1 -2.3	-34.3	85.4	-84.3	-42.2	-	-	-	-	1
																					Grey tint,				
		Clear,				Clear	Clear		Grey tint,	Grey tint,	Grey tint,	Grey tint,	Grey tint,	Grey tint,	Grey tint, Grey	tint, Grey tin	t, Grey tint,	Grey tint,	Grey tint,	Grey/brow	cloudy,				
	Cloudy,	slight	Clear, sligh	ht organic	Clear,	water,	water,	Grey tint,	some silt,	some silt,	some silt,	some silt,		some silt,	slight mod	erate slight	mild	moderate	mild	n tint, mild	moderate				
Observations	black, no	organic	odo	lour	slight	slight	slight	some silt,	slight	slight	slight	slight	slight	slight	organic org	anic organic	organic/che	organic	organic/che	organic	organic/ch	N/A	N/A	N/A	
	odour	odour			organic	organic	organic	no odour	organic	organic	organic	organic odour	organic odour	organic	odour od	our odour	mical odour		mical odour	odour	emical				
						odour	odour			odour	odour	ououi	odoui	odour							odour				
												AGW3										RTC	IGV	TSV	
hyl Tertiary Butyl Ether (MTBE)	2 2	18/05/16	27/07/16 4.7	25/08/16	28/09/16	1.6	23/11/16	14/12/16	2.3	15/02/17	2.3	2.6	2.8	3.7	07/03/18 05/	6/18 18/06/1	.8 28/06/18	28/09/18	03/12/18	1.2/03/19	11/06/19		30		4
Benzene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		<	<	<	<	-	1.0	1.0	+
Toluene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		<	<	<	<	16,600	10	-	Т
Xylenes (meta & para)	<	<	<	<	<	2.0	<	<	<	<	<	<	<	<		<		<	<	<	<	-	10	-	Т
O-Xylene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		<	<	<	<	-	-	-	_
Ethylbenzene	<	<	<	<	<	1.2	<	<	<	<	<	<	<	<	<	<		<	<	<	<	-	10	-	
Chloromethane	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		<	<	<	<	-	-	-	4
Dichloromethane (DCM)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<			<	<	<	<	13,900	10		+
2-Chlorotoluene TICs	<	<		<	· ·	<	<	<	<	<	<	<	<	<	<			· ·	· ·	<	<		_		
Tetrahydrofuran (THF)		-		_				<	-		-	-	-	-					3		<	9,310			4
Acetone	<	- 2	-					<			<			<				<	- 5	2	<	1,000,000	-		+
Dimethyl sulfide	<		<	<			<	<	<	<	<	<		<	<	<				<	-	-	-	-	$^{+}$
Cyclic octaatomic sulfur	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		<	<	<	<	-	-	-	Ť
SVOCs (μg/l)																									П
2-Methylphenol	<	<	<								<		<		<			<		<		-	-		Τ
4-Methylphenol	<	<	<								<		<		<			<		<			-	-	4
Phenol	<	<	<								<		<		<			<		<		20,600	0.5		
Phenols (mg/l)								-						-								20.6	0.0005		4
Phenol Catechol		<u> </u>	_ <		<		· ·	<	<	· ·	<	· ·	· ·	<	<			· ·		<	· ·	20.6	0.0005		+
ital Speciated Phenols HPLC			<					-						<								-			+
Alcohols (µg/l)																									
Methyl Alcohol (Methanol)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	< <	<	<	<	<	<	1,000,000	-	-	1
Ethyl Alcohol (Ethanol)	<	<	<	<	<	<	<	1322	<	<	<	<	<	<	<	< <	<	<	<	<	<	1,000,000	-	-	j
Isopropyl Alcohol	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	< <	<	<	<	<	<	1,000,000	-	-	Ι
n-Propyl Alcohol	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	< <	<	<	<	<	<	-	-	-	1
Tetrahydrofuran (THF)		<	<	<	<	11	<	<	<	13	<	6	<	11	<	5 <	5	<	3	3	2	9,310	-	-	
ld Water Quality Readings	7.03	7.04	7.53	0.04		6.53	7.20	7.55	6.00	6.51	6.30	7.43	6.40	6.07	7.43	71 7.65	7.75	7.00	7 74	6.40	653		10000	10000	4
pH	7.02	7.04	7.52 15.7	8.04 15.4	7.5 14	6.63	7.38 10.7	7.55	6.82	6.64	6.29	7.13 14.6	6.48	6.87		71 7.47	7.75 15.3	7.89 14.7	7.71	6.49	6.52	-	≥6.5-9.5≤	≥6.5-9.5≤	+
	12.3 2195	13.4 2199	15.7 2860	15.4 2962	3820	14.1 3384	10.7 3713	14.4 4849	14.2 6493	13.8 7293	15.4 7171	14.6 8906	15 6524	14.2 10406	11.9 1 4607 10	1.6 15.1 191 8626	15.3 12530	14.7 18756	14.6 10091	11.7 14627	15.4 8209	-	25	2500	+
Temp (°C)	2195	2199	2000	2302	4.94	1.7	16.22	10.38	1.12	0.52	1.93	3.33	-77	1.89	4607 10 4.44 3		3.59	1.83	3.81	4.16	6.53	1	1000	2500	+
EC (µS/cm)	-98	-73	-89.9	-86.4	-80	-83	-20	-71.5	-69.8	-83.1	-18.7	-102	3.34	1.89		81 3.8 8.6 89	102	1.83	98.6	-3.1	94.4	-			+
EC (µS/cm) DO (mg/l)		/3								JJ.1	20.7	102		Clear,			102	103.3	50.0		54.4				+
EC (µS/cm)			Slightly	Slightly	Clear,	Clear,	Cloudy,	Slightly	Slightly	Clear,	Clear,	Clear,	Clear, slight	slight	Clear, Cl		Clear,	Clear,	Clear,	Grey tint,					
EC (μS/cm) DO (mg/l)	Clear,	Clear,	cloudy,	cloudy,	moderate	moderate organic	moderate organic	cloudy, moderate	cloudy, slight	Slight	Slight	Slight	organic odour.	organic	moderate	rate, Clear, slig ic/ch chemica	moderate	moderate	moderate	moderate	Clear, slight fizz. no	N/A	N/A	N/A	
EC (µS/cm) DO (mg/l) Redox (mV)	Clear, slight	Clear, slight		elight							1 1 1				orga	ic/ch chemica	chemical	organic		organic/ch			IN/A	IN/A	
EC (µS/cm) DO (mg/l) Redox (mV)	Clear, slight chemical		slight	slight	organic					organic	organic	organic		odour,	chemical	ical ada		Organic	organic	omical					
EC (µS/cm) DO (mg/l) Redox (mV)	Clear, slight	slight	slight chemical	chemical	odour	odour	(not	organic	organic	organic odour	organic	organic	pumping	pumping	odour en	ical odour	odour	odour	odour	emical	odour				
EC (µS/cm) DO (mg/l) Redox (mV)	Clear, slight chemical	slight organic	slight			odour	(not													emical odour					l
EC (µS/cm) DO (mg/l) Redox (mV)	Clear, slight chemical	slight organic	slight chemical	chemical	odour	odour	(not pumping)	organic odour	organic	odour			pumping	pumping	odour en										

VOC (μg/l)											(r Results (ug	/I)										RTC	IGV	TSV	Gw Regs.
Methyl Tertiary Butyl Ether (MTBE) Benzene Toluene Xylens (meta & para) O-Xylene Chloromethane Dichloromethane (DCM) 2-Chlorotoluene	15/03/16 7.9 <	18/05/16 < < < < <	27/07/16 7.2 < < < < < <	25/08/16 8.8 < < < < < <	28/09/16 10.8 < < < < < <	27/10/16 13.4 0.5 < < < < <	23/11/16 5.9 < < < < < <	14/12/16 5.8 < < < < < <	16/01/17 6.9 < < < < < <	15/02/17 5.6 < < < < < <	14/03/17 8.6 < < < < < <	06/06/17 8.6 < < < < < <	14/09/17 1.2	15/11/17 21.5	7 07/03/18 10.9 <		18/06/18	28/06/18	28/09/18 16.5 < < < < < <	03/12/18 20 < < < < < <	12/03/19 0.3 < < < < < <	11/06/19 14.4 < < < < < <	29/02/16 3.4 < < < < < <	- 16,600 - - - 13,900	30 1.0 10 10 - - 10	- 1.0 - - - -	10 0.75 525 - - - 15
TICS Tetrahydrofuran (THF) Acetone Dimethyl sulfide Cyclic octaatomic sulfur SVOCS (II:/I) 2-Methylphenol 4-Methylphenol	< < <	< < <	< < < < < < < < < < < < < < < < < < <	< < <	< < <	< < <	< < <	< < <	< < <	< < <	< < < < < < < < < < < < < < < < < < <	< < <	< < < < < < < < < < < < < < < < < < <	< < <	< < < < < < < < < < < < < < < < < < <	< < <			< < < < < < < < < < < < < < < < < < <	< < <	< < < < < < < < < < < < < < < < < < <	< < <	< < < < < < < < < < < < < < < < < < <	9,310 1,000,000 - - -	-	-	115 - - - -
Phenol Phenols (mg/l) Phenols (mg/l) Phenol Catechol Total Speciated Phenols HPLC Alcohols (ttg/l) Methyl Alcohol (Methanol) Ethyl Alcohol (Ethanol)	< <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < <	< < <	< < 0.01 < < < <	< < <	< < < < < < < < < < < < < < < < < < <	< 0.01 < < < < < < < < < < < < < < < < < < <	< < <	< 0.02 < < < < < < < < < < < < < < < < < < <	< 0.01 < < < < < <	< < < < < < < < < < < < < < < < < < < <	< < <	< < <	< < <	< <	< <	<	< < <	< < < < < < < < < < < < < < < < < < < <	< < <	-	20,600 20.6 - - 1,000,000 1,000,000	0.5		-
Isopropyl Alcohol n-Propyl Alcohol Tetrahydrofuran (THF) Field Water Quality Readings pH Temp ("C) EC (µS/cm) DO (mg/l) Redox (mV)	7.23 12.4 1901	6.81 12.8 5920	7.7 14.9 3100	8.01 15.7 2666 -	7.19 14.8 2599 5.06	6.5 14.9 3186 5.0	7.41 11.2 2885 8.7	7.39 14.7 3725 8.12	6.9 15 2104 1.46	6.84 14.7 3945 5.59 -52.8	5.99 14.9 1850 0.36	7.5 14.9 5873 1.77	7.04 16.8 5494 -150 0.67	7.11 14.9 4082 1.74	7.53 13.3 7512 4.14 -28.6	7.77 14.2 7103 2.58	8.4 15 4260 2.26	8.6 15.9 6142 1.56	7.7 15.2 8049 1.84	6.97 13.8 7614 2.92 142.3	7.16 11.15 9324 8.91 138.4	6.79 13.9 19935 7.48 181.3	7.29 12.8 919	9,310	- - - ≥6.5-9.5≤ 25 1000	≥6.5-9.5≤ - 2500	115
Observations	Clear, slight chemical odour	Clear, slight chemical odour	Clear, slight chemical	Clear, slight chemical odour	Clear, moderate	Clear,	Clear, moderate organic odour (8I/min)	Clear, moderate organic odour	Clear,	Clear, Strong/mo derate chemical odour	Clear, Moderate	Clear, Moderate chemical odour	Black tint, brackish odour, Pump not operating	Clear, brackish odour	Clear with abundanc e of		Clear,	Clear, mild organic odour	Clear, brackish odour	Clear, mild organic odour	Clear, moderate organic/ch emical odour	Clear, brackish odour	Clear, slight organic odour	N/A	N/A	N/A	N/A
VOC (μg/l)												lwater Resul												RTC	IGV	TSV	Gw Regs.
Methyl Tertiary Butyl Ether (MTBE) Benzene Tolluene Xylenes (meta & para) O-Xylene Chloromethane Dichloromethane (DCM) 2-Chlorotoluene	15/03/16 3.9 < < < < 0.9 < 16	18/05/16 <	27/07/16 5.2 < < < 1.1 < <	25/08/16 5.2 < < < 0.7 < < <	28/09/16 2 3 4 4 5 4 5 6 7 7	27/10/16 1.6 < < < < < < <	23/11/16 1.5 < < < < < <	14/12/16 1.5 < < < < < < <	16/01/17 1.5	15/02/17 0.7 < < < < < < < <	14/03/17 1.2 <	7 06/06/17 1.2 < < < < < < < < < < < < < < < < < < <	12/09/17 2.4 < < < < < < <	15/11/17 8.7 < < < < < < <	7 07/03/18 1.5 < < < < < < <	05/06/18 4.6 < < < < < < <	3.4 < < < < < < < < < < < < < < < < < < <	03/12/18 3.6 < < < < < < < < < <	12/03/19 2.2 <	11/06/19 6 < < < < < < < < < 5	19/06/19	10/07/19		- 16,600 - - - 13,900	30 1.0 10 10 - - 10	- 1.0 - - - -	10 0.75 525 - - - 15
TICs Tetrahydrofuran (THF) Acetone Dimethyl sulfide Cyclic octaatomic sulfur SVOCs (µg/l) 2-Methylphenol 4-Methylphenol Phenol	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < <	< < <	< < <	< < <	< < <	< < <	< < <	< < < < < < < < < < < < < < < < < < < <	< < <	< < <	< < <	< < <	< < <	< < < < < < < < < < < < < < < < < < < <	< < <	< < < < < < < < < < < < < < < < < < <	< < <				9,310 1,000,000 - - - - 20,600		-	115
Phenols (mg/l) Phenol Catechol Total Speciated Phenols HPLC Alcohols (ug/l) Methyl Alcohol (Methanol) Ethyl Alcohol (Ethanol)	< <	< < <	< < <	< < <	< < <	< < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < <	< < < < < < < < < < < < < < < < < < <	< < <	< < <	< < < < < < < < < < < < < < < < < < <	< < <	< < <	< < <	< < <	< < < < < < < < < < < < < < < < < < <	< < <	< < < < < < < < < < < < < < < < < < <	< <	< <		20.6 - - 1,000,000 1,000,000	0.0005		-
Isopropyl Alcohol n-Propyl Alcohol Tetrahydrofuran (THF) Field Wester Quality Readings pH Temp ("C) EC (uS/cm) DO (mg/l)	7.29 11.6 518	7.48 15.4	7.26 15.3 1130	7.47 15.6 2148	7.76 13.8 2919 4.76	6.68 15.6 3063 3.31	7.46 13.8 3630 3.98	8 13.1 2842 6.87	7.01 13.6 4418 4.31	6.9 13.8 4357 4.93	6.4 14.1 2268 1.27	7.26 15.3 4492	6.68 15.2 1942 -115	6.92 13.9 1575	7.25 11.2 651 3.45	6.81 16.2 1173 1.63	7.9 15.3 5955 2.62	7.25 14.6 3214 2.17	6.71 12.8 761 2.12	7.28 17 1993 2.04	1006	7.72 13.2 1112 3.89		9,310	≥6.5-9.5≤ 25 1000	26.5-9.5≤ - 2500	- - 115 - - - 800-1875
Redox (mV) Observations	Clear, very mild organic odour	Clear, very mild organic odour	-115.9 Clear, very mild organic odour	-92.7 Clear, very mild organic odour	Clear, very mild organic odour (12l/min)	-38 Clear, very mild organic odour (12.5 l/min)	-65 Clear, very mod organic odour (not pumping)	-70.1 Clear, moderate organic odour	-89.4 Clear, moderate organic odour	-91.5 Clear, Moderate organic odour	-26.9 Clear, Slight organic odour	-113.8 Clear, Moderate organic odour	Clear, mild organic odour, not pumping	organic	Clear, moderate organic/ch emical odour	Clear, mile organic/cl emcial odour	d Clear, moderate organic/che mical odour		Clear, moderate organic odour	-44.3 Clear, moderate organic/che mical odour		-52 Clear, moderate organic odour		N/A	N/A	N/A	N/A
Legend IGV = EPA Interim Guideline Value TSV = Groundwater EPA Threshold Scree Results are in bold where they exceed th		Drinking W	ater Param	netric Value			Results are	marked in I	Concentation	e they excee	eded the RT	C SI 366 of 20:	16										ı				

Table 5: Additional Groundwater Analytical Results for GSK Well AGW6 (January 2016 to June 2019)

VOC (μg/l)										Ground	lwater Resu	lts (ug/l)										[<u> </u>	T		
νου (μ β/1)											AGW6											RTC	IGV	TSV	Gw Re
	29/02/16	15/03/16	18/05/16	28/07/16	26/08/16	28/09/16	27/10/16	23/11/16	14/12/16	16/01/17	15/02/17	14/03/17	07/06/17	14/09/17	20/11/17	07/03/18	06/06/18	28/09/18	04/12/18	12/03/19	11/06/19				
lethyl Tertiary Butyl Ether (MTBE)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	30	-	10
Benzene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	1.0	1.0	0.7
Toluene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	16,600	10	-	52
Xylenes (meta & para)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	10	-	-
O-Xylene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	-
Chloromethane	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	-
Dichloromethane (DCM)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	13,900	10	-	15
2-Chlorotoluene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		-	-	-
TICs																									
Tetrahydrofuran (THF)	<	<	<	<	<	<	<	<	<	<	<	<	<	<		<	<	<	<	<	<	9,310	-	-	11
Acetone	<	<	<	<	<	<	<	<	<	<	<	<	<	<		<	<	<	<	<	<	1,000,000	-	-	-
Dimethyl sulfide	<	<	<	<	<	<	<	<	<	<	<	<	<	<		<	<	<	<	<	<	-	-	-	-
Cyclic octaatomic sulfur	<	<	<	<	<	<	<	<	<	<	<	<	<	<		<	<	<	<	<	<	-	-	-	-
SVOCs (µg/l)																									
2-Methylphenol	-	<	<	<								<		<		<		<		<		-	-	-	-
4-Methylphenol		<	<	<								<		<		<		<		<			-	-	-
Phenol	-	<	<	<								<		<		<		<		<		20,600	0.5	-	-
Phenols (mg/l)																						20.6	0.0005		
Phenol Tatal Consists of Phanol Links			<	<	<	<	< <	<	< <	< <	<	< <	<	<	< <	< <	< <	< <	< <	<	<	20.6	0.0005	-	-
Total Speciated Phenols HPLC Alcohols (µg/l)			_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_		-	-	-	-
Methyl Alcohol (Methanol)		<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.000,000	-		
Ethyl Alcohol (Ethanol)		-	<	<	-	<	<	_ <	<	<	<	<	<	_ <	<		<	~	<	<	<	1,000,000	-	-	1
Isopropyl Alcohol		-	<	-	-	<	<	_ <	<	<	<	<	<	_ <	<		<	-	<	<	-	1,000,000	-	-	1
n-Propyl Alcohol		~	<	<	-	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	- 1,000,000	-		
Tetrahydrofuran (THF)			<	<	-	<	<	<	<	<	<	<	<	<	<	~	<	<	<	<	<	9,310	-		115
Field Water Quality Readings	1																					3,510			113
pH	8.05	8.25	7.92	8.5	8.53	8.05	7.71	8.19	8.33	8.07	8.12	7.18	8.26	8.06	8.61	8,27	8.73	8.96	7.39	7.84	8.10	-	≥6.5-9.5≤	≥6.5-9.5≤	-
Temp (°C)	12.8	12.8	13.2	14	13.5	14.7	13.7	13.3	12.6	13.2	13	13.4	13	13.6	13.9	12.7	15.1	13.6	12.4	11.9	14.7	-	25	-	-
EC (µS/cm)	450	445	400	429.2	289	1486	446	488	495	419	401	338	385	222	342	272.7	269.3	389.6	396.6	264	572	-	1000	2500	800-18
DO (mg/l)	-	-	-	-	-	7.4	8.03	8.71	9.58	6.01	7.29	7.67	5.64	2.2	5.27	7.25	6.54	6.12	8.37	6.71	6.42	-	-	-	-
Redox (mV)	-	-94	19	52.2	44.2	18.6	-15.6	-13	-19.9	20.1	-29	63	-6.7	5.64	41	70.7	59.3	51.2	93	-19.9	-16.7	-	-	-	-
,																					Cloudy				
																					brown				
	Cloudy,	Cloudy	Cloudy	Cloudy,	Cloudy,				Cloudy,	Cloudy,	Cloudy,	Cloudy,	Cloudy,	Cloudy	Cloudy	Cloudy		Cloudy	Cloudy	Cloudy	colour,				
	orange-	light	light	light	light	Brown	Brown	Brown	reddish	reddish/	Reddish/	Reddish/	Reddish/	light	light	borown	Brown,	brown	brown	brown	slightly		1 .		
Observations	brown, no					silty, no	silty, no	silty, no	brown, no	,		brown, No		red/brow	red/brow	colour	silty with	colour	colour	colour	silty, very	N/A	N/A	N/A	N/
	odour	odour	odour	odour	odour	odour.	odour.	odour.	odour	odour	odour	odour	odour	n, no	n, no	and no	no odour	and no	and no	and no	slight				
	ououl	ouour	ouour	ouour	ououi				ouour	ououl	ououi	Ououi	ououi	odour	odour	odour		odour	odour	odour					
																					organic odour				

IGV = EPA Interim Guideline Value
TSV = Groundwater EPA Threshold Screening Value or Drinking Water Parametric Value
Results are in **bold** where they exceed the EPA IGV

RTC - Remedial Target Concentations
Results are marked in brown where they exceeded the RTC
Results are italics where they exceed the TSV or Gw Regs SI 366 of 2016

Table 6: Additional Groundwater Analytical Results for GSK Well AGW8 (January 2016 to June 2019)

VOC (μg/l)								G	roundwater	Results (ug	/I)											
100 (PB) .)									AG	W8									RTC	IGV	TSV	Gw Reg
	15/03/16	18/05/16	28/07/16	26/08/16	28/09/16	27/10/16	23/11/16	14/12/16	16/01/17	15/02/17	14/03/17	07/06/17	14/09/17	20/11/17	07/03/18	04/12/18	12/03/19	11/06/19				
Methyl Tertiary Butyl Ether (MTBE)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	30	-	10
Benzene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	1.0	1.0	0.75
Toluene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	16,60	10	-	525
Xylenes (meta & para)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	10	-	-
O-Xylene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	-
Chloromethane	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	-
Dichloromethane (DCM)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	13,90	10	-	15
2-Chlorotoluene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		-	-	-
TICs																						
Tetrahydrofuran (THF)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	9,310	-	-	115
Acetone	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1,000,0	00 -	-	-
Dimethyl sulfide	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	-
Cyclic octaatomic sulfur	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	_		_	
SVOCs (ug/l)																						
2-Methylphenol	<	<	<								<		<		<		<	<	_	-	-	
4-Methylphenol	<	<	<								<		<		<		<	<	_	_	-	
Phenol	<	<	<								<		<		<		<	<	20,60	0.5	-	
Phenols (mg/l)																			20,00	0.5		
Phenol		<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	20.6	0.0005	-	-
Total Speciated Phenols HPLC		<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		- 0.0003	-	
Alcohols (µg/l)																						
Methyl Alcohol (Methanol)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1,000,0	00 -	-	
Ethyl Alcohol (Ethanol)	<	<	<	<	<	<	<	<	<	<		<	<	<	<	<	<	<	1,000,0		-	
Isopropyl Alcohol	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1,000,0	_	_	
n-Propyl Alcohol	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		-	_	
Tetrahydrofuran (THF)		<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	9,310		-	115
Field Water Quality Readings																			3,510			115
pH	7.57	7.92	8.25	8,49	8.36	7.51	7.35	8.66	7.86	7.2	7.07	8.04	7.81	7.32	8.13	8.06	7.66	8.13	_	≥6.5-9.5	≥6.5-9.5≤	
Temp (°C)	11.8	12.8	14.4	14.2	14.4	13.5	11.3	13.2	12.7	12.4	17.7	12.9	13.5	13.1	12.2	12	11.8	14.7	_	25	20.3-3.33	-
EC (μS/cm)	760	627	630	445.2	762	945	728	753	721	1057	778	755	440	593	504	710	486	803	_	1000	2500	800-18
DO (mg/l)	700	027		-	10.95	10.91	9.4	7.56	5.92	6.91	2.99	6.13	6.04	5.48	6.86	9.1	3.73	- 003		1000	2300	000-10
Redox (mV)	234	30	37.2	24.2	-25	-39	-56	-11	0.1	-61.2	106.2	19.3	-15	37	63.7	7.3	-13.8	-				
Observations	Clear, no odour		Clear, no odour		Clear, no odour,		Clear, No	Clear, No odour, Purged dry	Clear, no odour, purging	Clear, no odour, purging dry		Clear with no odour	Clear with		N/A	N/A	N/A	N/A				

Legend

IGV = EPA Interim Guideline Value TSV = Groundwater EPA Threshold Screening Value or Drinking Water Parametric Value Results are in **bold** where they exceed the EPA IGV RTC - Remedial Target Concentations

Results are marked in brown where they exceeded the RTC

Results are italics where they exceed the TSV or Gw Regs SI 366 of 2016

Table 7: Additional Groundwater Analytical Results for GSK Well AGW9 (January 2016 to June 2019)

VOC (μg/l)		Groundwater Results (ug/l)																						
100 (49/1)										AGW	9										RTC	IGV	TSV	Gw Reg
	15/03/16	18/05/16	28/07/16	26/08/16	28/09/16	27/10/16	23/11/16	14/12/16	16/01/17	15/02/17	14/03/17	07/06/17	14/09/17	20/11/17	07/03/18	06/06/18	28/09/18	04/12/18	12/03/19	11/06/19				4
Methyl Tertiary Butyl Ether (MTBE)	0.2	<	0.6	0.6	0.3	0.3	0.3	0.3	0.3	0.2	<	0.3	0.2	0.5	<	<	0.3	0.4	<	0.3	-	30	-	1
Benzene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	1.0	1.0	0.
Toluene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	16,600	10	-	5
Xylenes (meta & para)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	12	<	<	<	<	<	-	10	-	
O-Xylene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	2	<	<	<	<	<	-	-	-	
Chloromethane	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	
Dichloromethane (DCM)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	13,900	10	-	
2-Chlorotoluene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		-	-	
TICs																								
Tetrahydrofuran (THF)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	9,310	-	-	1
Acetone	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1,000,000	-	-	T
Dimethyl sulfide	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	
Cyclic octaatomic sulfur	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	
SVOCs (μg/l)																								
2-Methylphenol	<	<	<								<				<		<		<		-	-	-	
4-Methylphenol	<	<	<								<				<		<		<		-	-	-	
Phenol	<	<	<								<				<		<		<		20,600	0.5	-	
Phenols (mg/l)																								
Phenol	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	20.6	0.0005	-	T
Total Speciated Phenols HPLC	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	
Alcohols (μg/l)																								
Methyl Alcohol (Methanol)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1,000,000	-	-	
Ethyl Alcohol (Ethanol)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1,000,000	-	-	
Isopropyl Alcohol	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1,000,000	-	-	T
n-Propyl Alcohol	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	T
Tetrahydrofuran (THF)		<	<	<	<	<	<	1	<	<	<	<	<	<	19	1	<	2	1	<	9,310	-	-	1
Field Water Quality Readings																								
pH	7.76	8.12	8.35	8.36	8.08	7.42	7.9	8.38	7.82	7.28	6.97	8.27	7.77	7.42	7.97	8.58	8.8	7.84	7.75	8.11	-	≥6.5-9.5≤	≥6.5-9.5≤	
Temp (°C)	11.9	14.4	13.7	13.6	14.1	14	13.2	13.5	13.5	13	13.6	12.9	13.8	13.9	14.2	13.8	14.3	13.2	11.9	16	-	25	-	
EC (μS/cm)	581	674	685	455.4	749	720	736	652	747	1150	643	850	465	620	443.6	423.9	762	773	495.7	1324	-	1000	2500	800-
DO (mg/l)	-	-	-	-	2.37	2.96	7.5	6.62	2.92	2.18	3.21	2.27	-70	3.03	2.94	3.56	3.69	6.67	2.87	-	-	-	-	Т
Redox (mV)	96	493	-45.3	-41.2	-76	-104	40	-5.8	-51.2	-73	161.4	-125.2	3.25	-12	75.7	19.3	76.9	81.5	-9.2	-	-	-	-	
Observations	Brown, silty, no odour	Cloudy grey, no odour	Brown, silty, no odour	Brown, silty, no odour	Brown, silty, no odour	Brown, silty, no odour	Brown tint, no odour	Grey/ brown silty, slight organic	Grey/ brown silty slight organic	Grey/brow n tint, with no odour		Grey/brow n tint, no odour	Grey/brow n tint, no odour	Cloudy, no odour	Slight grey tint, slightly cloudy, no odour	N/A	N/A	N/A						

IGV = EPA Interim Guideline Value TSV = Groundwater EPA Threshold Screening Value or Drinking Water Parametric Value Results are in **bold** where they exceed the EPA IGV

RTC - Remedial Target Concentations

Results are marked in brown where they exceeded the RTC

Results are italics where they exceed the TSV or Gw Regs SI 366 of 2016

Table 8: Additional Groundwater Analytical Results for GSK Well AGW10 (January 2016 to June 2019)

VOC (μg/l)									Gro	undwater Re	esults (ug/l)													
100 (pg/·/										AGW1	.0										RTC	IGV	TSV	Gw Reg
	15/03/16	18/05/16	28/07/16	26/08/16	28/09/16	27/10/16	23/11/16	14/12/16	16/01/17	15/02/17	14/03/17	07/06/17	14/09/17	15/09/17	07/03/18	06/06/18	28/09/18	04/12/18	12/03/19	11/06/19				4
Methyl Tertiary Butyl Ether (MTBE)	0.3	<	0.5	0.5	0.2	<	0.2	<	0.2	0.1	<	0.2	0.2	0.7	<	<	0.4	0.3	<	0.3	-	30	-	10
Benzene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	1.0	1.0	0.75
Toluene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	20	<	<	<	<	<	16,600	10	-	525
Xylenes (meta & para)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	10	-	-
O-Xylene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	-
Chloromethane	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	-
Dichloromethane (DCM)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	13,900	10	-	15
2-Chlorotoluene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		-	-	-
TICs																								
Tetrahydrofuran (THF)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	9,310	-	-	115
Acetone	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1,000,000	-	-	-
Dimethyl sulfide	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	-
Cyclic octaatomic sulfur	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	-
SVOCs (µg/I)								ĺ				Ì		İ			İ	Ì						
2-Methylphenol	<	<	<								<				<		<		<		-	-	-	-
4-Methylphenol	<	<	<								<				12		<		<		-	-	-	-
Phenol	<	<	<								<				<		<		<		20,600	0.5	-	-
Phenols (mg/l)																					20,000			
Phenol		<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	20.6	0.0005	-	-
Total Speciated Phenols HPLC		<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	-
Alcohols (ug/l)																								
Methyl Alcohol (Methanol)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.000,000	-	-	-
Ethyl Alcohol (Ethanol)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1,000,000	-		-
Isopropyl Alcohol	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1,000,000	-	-	-
n-Propyl Alcohol	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-		-
Tetrahydrofuran (THF)		65	23	25	106	101	31	25	22	37	26	98	100	31	11	4	7	3	<	6	9,310	-		115
Field Water Quality Readings														-							0,020			117
pH	7.18	7.88	8.01	8.11	7.37	7.08	7.69	8.14	7.62	7.17	6.51	7.5	7.04	7.08	7,44	8.11	8.66	7.22	7.1	7.65	_	≥6.5-9.5≤	≥6.5-9.5≤	-
Temp (°C)	13.1	13.4	13.7	14.1	14.3	14.3	12	13.2	13.7	13.6	13.9	13.2	13.6	14.1	12.7	13.5	13.9	12.9	11.8	15.7	-	25		-
EC (µS/cm)	903	811	847	573	954	949	927	819	956	939	7.85	996	589	932	626	653	1013	782	592	1063	-	1000	2500	800-18
DO (mg/l)	-		-		6.62	4.67	9.22	8.06	3.48	3.87	1.62	3.47	3.73	3.41	2.5	3.73	4.35	5.43	4	- 1003	_	-	- 2300	- 000 10
Redox (mV)	-34	-7	-42.3	-44.4	-36	-69	-2	43.9	-6.3	-34.7	18.6	-68.8	-74	-65	86.8	18.3	86.5	95	16.3					1
Observations		Brown, silty, no odour	Clear, brown tint, no odour	Clear, brown tint, no odour	Grey/ brown silty, no odour	Grey/	Brown tint, slight organic odour	Brown tint, no odour	Brown tint, slight organic odour	Brown tint, No odour	Brown tint, Slightly silty, No odour	Brown tint, Slightly silty, No odour	Brown tint,	Grey/ brown tint, no odour	Grey/brow	Brown tint,	Grey/ brown tint, no odour	Cloudy, Grey/brow n tint, no odour	Orange tint, no odour	Light brown tint, no odour	N/A	N/A	N/A	N/A

Legend

IGV = EPA Interim Guideline Value
TSV = Groundwater EPA Threshold Screening Value or Drinking Water Parametric Value
Results are in **bold** where they exceed the EPA IGV

RTC - Remedial Target Concentations

Results are marked in brown where they exceeded the RTC

Results are italics where they exceed the TSV or Gw Regs SI 366 of 2016

Table 9: Additional Groundwater Analytical Results for GSK Wells AGW11a (January 2016 to June 2019)

C (μg/l)			Groundwater Results (ug/l)																					
								AGW1	1									AGN	V11a		RTC	IGV	TSV	Gw Reg
	15/03/16	18/05/16	27/07/16	26/08/16	28/09/16	27/10/16	23/11/16	14/12/16	16/01/17	15/02/17	14/03/17	06/06/17	14/09/17	15/11/17	07/03/18	05/06/18	28/09/18	04/12/18	12/03/19	11/06/19				
Methyl Tertiary Butyl Ether (MTBE)	0.9	<	6	6.8	3	2.1	3.3	2.8	2.8	2.5	2.6	4.3	4	5	2.9	4.8	2.3	1.5	1	1.5	-	30	-	10
Benzene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	1.0	1.0	0.75
Toluene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	16,600	10	-	525
Xylenes (meta & para)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	10	-	-
O-Xylene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	-
Chloromethane	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	-
Dichloromethane (DCM)	<	<	<	<	<	<	<	<		<	<	<	<	<	<	<	<	<	<	<	13,900	10	-	15
2-Chlorotoluene	<	<	<	<	<	<	<	<		<	<	<	<	<	<	<	<	<	<	<		-	-	-
TICs																								
Tetrahydrofuran (THF)	<	134	<	<	<	<	<	<		<	17	<	<	<	<	<	<	<	<	<	9,310	-	-	115
Acetone	<	<	<	<	<	<	<	<		<	<	<	<	<	<	<	<	<	<	<	1,000,000	-	-	-
Dimethyl sulfide	<	<	<	<	<	<	<	<		<	<	<	<	<	<	<	<	<	<	<	-	-	-	-
Cyclic octaatomic sulfur	<	<	<	<	<	<	<	<		<	<	<	<	<	<	<	<	<	<	<	-	-	-	-
SVOCs (µg/I)				Ì													i e							
2-Methylphenol	<	<	<								<		<	<	<		<		<		-	-	-	-
4-Methylphenol	<	<	<								<		<	<	<		<		<		_	-	-	
Phenol	<	<	<								<		<	<	<		<		<		20,600	0.5	-	-
Phenois (mg/l)													·								20,000	0.5		
Phenol		<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	20.6	0.0005	-	
Resorcinol		<	<	<	<	<	<	<	0.01	<	<	<	<	<	<	<	<	<	<	-		0.0003	-	-
Catechol		<	<	<	<	<	<	<	<	<	<	<	-	<	<	<	<	<	<	<	_			-
Total Speciated Phenols HPLC		<	-	-	<	<	<	<	<	<	<	<	-	<	<	<	1	<	<	<	_			-
Alcohols (ug/l)		_									_													
Methyl Alcohol (Methanol)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1,000,000	-	-	-
Ethyl Alcohol (Ethanol)		-	<	-	<	<	<	<	~	<	~		-	<		-	\ \	-	<	-	1,000,000			+ -
Isopropyl Alcohol	-	-	<	-	<	<	<	-	~	<	<		<	<	-	-	\ \	<	<	<	1,000,000			+ -
n-Propyl Alcohol		-	<	-	-	<	-	-	~	<	~		-	<	-	-	\ \	-	<	<	1,000,000			+ -
Tetrahydrofuran (THF)	_	3078	1972	2277	212	155	256	29	_ <	376	17	449	-	120	<	7603	28	1	<	<	9,310		-	115
Field Water Quality Readings		3078	1972	22//	212	155	250	29	_	370	17	449	_	120	_	7003	20	1	_		9,310	-	-	113
pH	6.96	-	7.07	7.78	7.75	6.35	7.49	8.08	7.21	7.44	6.63	7.24	6.62	6.53	7.16	7.91	7.82	7,47	6.8	6.85		>65054	≥6.5-9.5≤	< -
Temp (°C)	15.1	17.4	17.7	17.7	17.6	17.4	17.4	12.6	17.2	17.4	17.1	18.3	17.1	17.5	16.9	19.1	18.3	15.4	17	19.2		25	20.3-9.35	-
EC (µS/cm)	869	977	1013	698	974	929	1168	949	1116	117.4	830	2961	3966	6434	3374	>4000	7657	4600	2265	4330	-	1000	2500	800-18
DO (mg/l)	803	0.79	- 1013	- 056	4.3	8.04	4.07	4.31	1.54	1.27	0.86	1.64	-107	0.76	1.06	-4000	1.56	2.77	4.42	4.86	<u> </u>	1000	2500	800-18
	-92	-82	-111.5	-82.1	-107	-95	-69	-85.8	-44.1	-79	-54.1	-137.8	2.31	-91	-30.4	-	131.8	-57.4	-21.9	4.80	-			+ -
Redox (mV)	-92	-82	-111.5	-82.1	-107	-95	-69	-85.8	-44.1	-79	-54.1	-137.8	2.31	-91	-30.4	-	131.8	-57.4	-21.9	40	-	-	-	+
Observations	Clear, slight chemical odour	Brown, silty, slight organic odour	Clear, slight chemical/or ganic odour	Grey tint, moderate chemical odour	Dark grey, slight/ mod organic / chemical odour	Cream, mod organic / chemical odour	Cream, mod organic / chemical odour	Clear, mod chemical/o rganic odour	Grey, slightly cloudy, moderate chemical/o rganic odour	Grey, slightly cloudy, Mild chemical/o rganic odour	Very slightly cloudy, Mild chemical/o rganic odour	Grey, cloudy, mild chemical/o rganic odour	Grey tint, moderate organic odour	Clear, mild organic odoour	Grey tint, moderate organic/ch emical odour	Grey tint, moderate organic odour	Grey tint, mild organic/ch emical odour	Grey tint, organic odour	Brown tint, mild organic odour	Orange/br own, silty, no odour	N/A	N/A	N/A	N/A

IGV = EPA Interim Guideline Value

TSV = Groundwater EPA Threshold Screening Value or Drinking Water Parametric Value

Results are in **bold** where they exceed the EPA IGV

RTC - Remedial Target Concentations

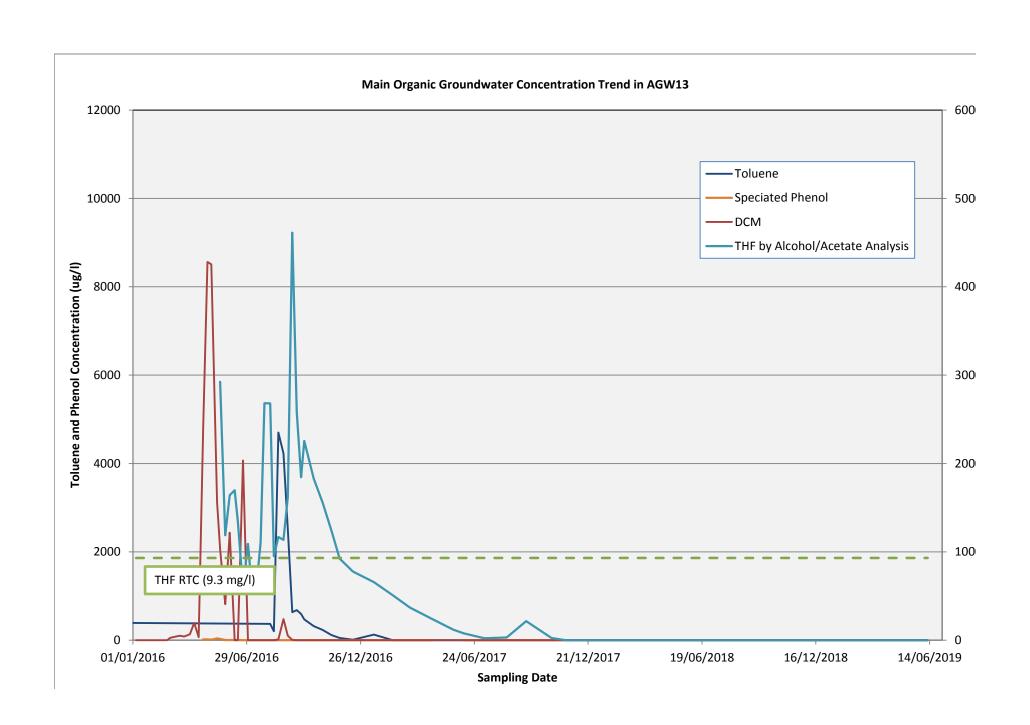
Results are marked in brown where they exceeded the RTC Results are italics where they exceed the TSV or Gw Regs SI 366 of 2016

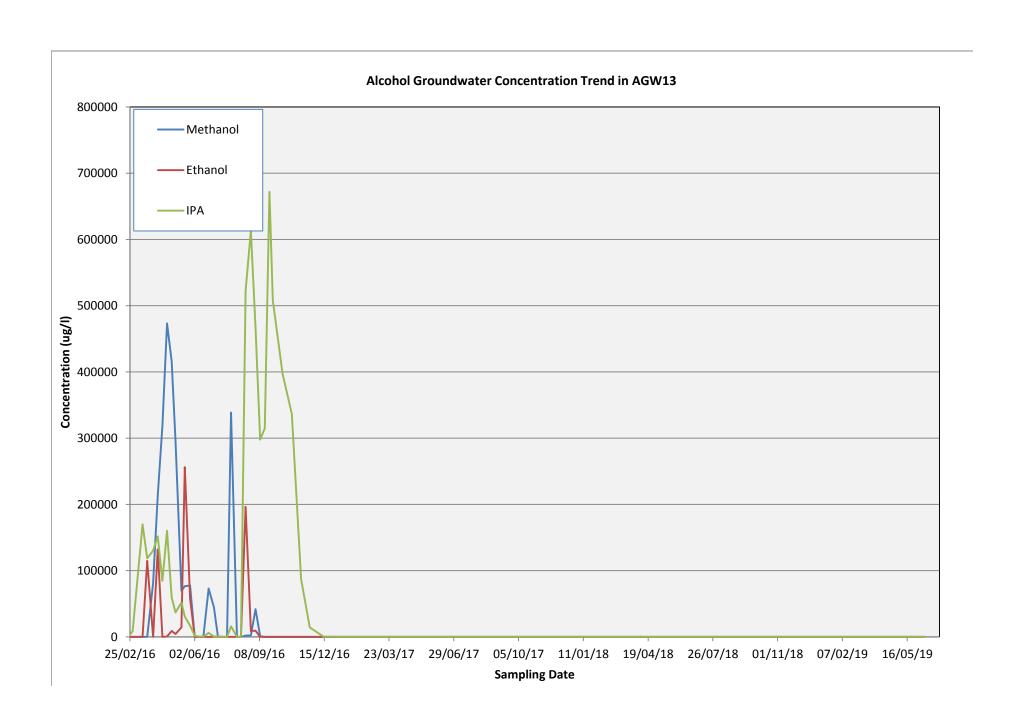
Table 10: Additional Groundwater Analytical Results for GSK Well AGW12 (January 2016 to June2019)

V(00 ((I))										Groundw	ater Results	(ug/l)													
VOC (μg/l)											AGW12											RTC	IGV	TSV	Gw Re
	29/02/16	15/03/16	18/05/16	27/07/16	25/08/16	28/09/16	27/10/16	23/11/16	14/12/16	16/01/17	15/02/17	14/03/17	06/06/17	14/09/17	20/11/17	07/03/18	05/06/18	28/09/18	03/12/18	12/03/19	11/06/19				1
Methyl Tertiary Butyl Ether (MTBE)	3	2.9	5.0	5	5.2	1.9	5.3	2.9	3.1	3.4	1.9	3.0	2.9	3.8	5.5	4.4	7	5.3	5.1	3.8	4.5	-	30	-	10
Benzene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	1.0	1.0	0.7
Toluene	10	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	16,600	10	-	52!
Xylenes (meta & para)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	10	-	
O-Xvlene	<	<	<	0.5	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	-
Chloromethane	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	_	-	-
Dichloromethane (DCM)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	13,900	10	-	15
2-Chlorotoluene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	8	3	4	<	11	11	10	15,500	-	_	13
TICs													ì			,	_	_	11	11	10				
Tetrahydrofuran (THF)	<	116	532	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	9,310		-	115
Acetone	<	<		<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1,000,000		_	-
Dimethyl sulfide	-	~	<	-	<	<	~	~	<	~	<	-	<	-	<		<	~	-	-	<	-			-
Cyclic octaatomic sulfur	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-		-	-
SVOCs (µg/I)		_														_						-			
2-Methylphenol		<	<	<								<		<		<		<		<		-	-	-	-
4-Methylphenol		_ <	<	-								-		<		_ <		~		<		-		-	-
Phenol		<	<	<								<		<		<		<		<		20,600	0.5	-	-
Phenois (mg/l)		_		_														_				20,000	0.5	_	_
Phenol Phenol			<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	20.6	0,0005	-	-
Resorcinol			<	-	<	<	<	<	<	<	<	0.03	0.05	<	0.06	<	0.03	_	<	<	<	20.6	0.0005	-	
			<	-	<	<	<	<	<		<	0.03	0.05	<	0.06	<	< 0.03	_ <	<	<	<	-		-	-
Catechol				-			_	0.02		0.07		-	_	<	<		<	_	<	<	<				-
Total Speciated Phenols HPLC Alcohols (ug/l)			0.1	<	<	<	<	0.02	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	-
Methyl Alcohol (Methanol)																						1.000.000			
	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		-	-	_
Ethyl Alcohol (Ethanol)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1,000,000	-	-	-
Isopropyl Alcohol	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1,000,000	-	-	-
n-Propyl Alcohol	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	-
Tetrahydrofuran (THF)			9596	8830	3903	32	<	<	2	<	<	<	2	<	<	<	<	<	5	<	<	9,310	-	-	115
Field Water Quality Readings	<u> </u>			ļ												<u> </u>									
pH	7.19	7.2	7.51	7.44	7.73	7.76	6.98	7.54	8.14	7.7	6.66	7.42	7.28	7.14	7.24	7.43	7.44	8.21	7.51	7.34	7.21	-	≥6.5-9.5≤	≥6.5-9.5≤	-
Temp (°C)	12.0	12.5	14.3	13.4	13.8	14.8	13.7	12.3	13.1	12	12	13.8	13	14.2	13.9	11.5	14.9	15.4	13.5	12.5	13.2	-	25	-	-
EC (µS/cm)	950	940	500	814	1001	1310	1474	1819	1573	2768	2368	1962	2344	1617	1368	1832	1179	2150	1729	1266	1494	-	1000	2500	800-18
DO (mg/l)	-	-	10.24	-	-	6.7	4.73	6.07	4.36	2.92	1.87	2.44	1.96	-119	3.61	6.09	3.5	4.08	5.26	2.5	3.92	-	-	-	-
Redox (mV)	-	-86	18	-98.1	-62.9	-65	-106	-21	-85	-56.1	-72.2	101.6	-81.3	4.65	-60	-3.1	75.3	84.4	-67.7	-25.9	26.4	-	-	-	-
Observations	Clear, moderate chemical odour	Clear, slight chemical odour	Clear, slight chemical odour	Clear, slight chemical odour	Cloudy, slight chemical odour	Orange tint, slight chemical odour, poor recovery	Clear, mod organic odour	Coudy, slight organic.	Cloudy, slight organic odour	Cloudy, slight organic odour	Clear, Slight organic odour	Clear, Moderate chemical odour	Grey/brov n tint, moderate organic odour	brown tint,	Grey/ brown tint, slight organic odour	Clear with ' slight organic smell	Slight grey tint, mild organic/ch emical odour	Clear with slight organic odour	Clear, mild organic/ch emical odour	Clear, moderate organic/ch emical odour	Grey tint, moderate organic/ch emical	N/A	N/A	N/A	N/A

IGV = EPA Interim Guideline Value

TSV = Groundwater EPA Threshold Screening Value or Drinking Water Parametric Value Results are in **bold** where they exceed the EPA IGV


RTC - Remedial Target Concentations


Results are marked in brown where they exceeded the RTC Results are italics where they exceed the TSV or Gw Regs SI 366 of 2016

1100/ /II)												Gr	oundwater I	Results (ug/l)																	
VOC (μg/l)													AGW13													Dup	4	RTC	IGV	TSV	Gw Regs.
	06/01/16	25/01/16	15/02/16	24/02/16	29/02/16	15/03/16	22/03/16	31/03/16	07/04/16	14/04/16	21/04/16	28/04/16	04/05/16	13/05/16	18/05/16	26/05/16	02/06/16	10/06/16	15/06/16	23/06/16	01/07/16	07/07/16	14/07/16	21/07/16	27/07/16	27/07/16	á '				
Methyl Tertiary Butyl Ether (MTBE)	1.3	<	<	<	<	<	<	<		<	<	<	<	<	<	<	<	<	<	<	<	619	241	57	137	133	1	- 1	30	-	10
Benzene	<	<	<	<	<	0.7	0.5	<		<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<] '	-	1.0	1.0	0.75
Toluene	4,871	5,880	3,084	5,314	8,569	8,654	8,826	11,374	5,279	10,805	10,596	5,250	4608	4302	3233	3104	1625	1448	1218	4566	543	172	262	159	2461	2868		16600	10		525
Xylenes (meta & para)	5	4	<	<	<	2	2	<	2	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	_ '	-	10		-
O-Xylene	<	<	<	<	<	0.7	0.5	<	10.3	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	_ '	-	-	-	-
Ethylbenzene	<	<	<	<	<	<	<	<	1.1	<	<	<	< 7	<	<	<	<	<	<	<	<	<	<	<	<	<	- '	-	10		-
Chloromethane	<	<	<	<	640	57	162	<	17	<	<	<	,	<	<	<	<	<	<	<	<	<	<	<	<	<	- '				
Dichloromethane (DCM)	<	<	<	<	278	518	418	675	1956	341	23920	42811	42534	15606	10308	4086	12175	<	<	20334	<	<	<	<	<	<	- '	13900	10		15
2-Chlorotoluene	<	<	<	<				<	17	<	4	< 6	<	6	28	28	<		<	< 7	<	<	<	<	<	<	- '		12		
Chloroform 1,1-Dichloroethene (1,1 DCE)		<						- 5	- 1/	- 5	<	<	<	· 6	11	11				- /							- '		12		-
Carbon Dislulphide		_	_ `	_			_ `			_				_	- 11	- 11				_	<u> </u>	<u> </u>		_	_	_ `	<u> </u>				-
TICs																											<u> </u>				
Tetrahydrofuran (THF)	113		144895	144867	<		113178	<	2194	4459	-	<		<		1241	<		611	-	<		-			-	1 '	9310		,	115
Acetone	- 113		173	2,159		1,677	833	239	2134	1305				-		< .	-	-	<	-	-	-	-		-		- '	1000000	-:		1115
Acentonitrile			<	<		<	<	< <	<	< 1303									-			-					1 '	200000			_
Dimethyl sulfide	-		<	-		215	912	-	<	<	-			-				-	-	<	271	-	-		-	-	1 '				
Sulfur	-		<	<		<	<	-	<	<	-			-				-	-	<	204	-	-		-	-	1 '	-			
Cyclic octaatomic sulfur	-		<			1860	2115	2033	487	644	820	1501	492	-		530		2117	708	543	1641	-	-		-	-	1 '	-			
Methyl Isobutyl Ketone	-		<	<	<	<	<	166	<	<	<	<	<		<	<	<	<	<	<	<	-		<			1 '	-			
2-Pentanol, 4-methyl-	<		<	<	<	<	<	100	<	<	<		<	<	<	<	<	-	<	<	<	<	<	<	<	<	1 '	-			-
Diisopropylethylamine	<		<	<	<	<	<	<	295	<	<	<	<	<	1541	<	<	<	<	<	<	<	<	<	<	<	1 '	-	-	-	-
Benzene, 1,4-diethyl-	<		<	<	<	<	<	<	<	237	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1 '	-	-	-	-
Benzene, 1,3-diethyl-	<		<	<	<	<	<	<	<	<	<	205	118	<	<	<	<	<	<	<	<	<	<	<	<	<	1 '	-	-	-	-
Benzene, 1,2-diethyl-	<		<	<	<	<	<	<	<	<	<	<	<	124	<	<	<	<	<	<	<	<	175	<	<	<	1 '	-	-	-	-
Isopropyl Alcohol (IPA)	<		<	<	<	<	<	<	<	<	<	<	<	854	<	330	<	<	<	<	<	<	<	<	<	<	1	1000000	-	-	-
TERT-Butyldimethylsilanol	<		<	<	<	<	<	<	<	<	<	<	<	139	187	<	<	<	<	<	<	<	<	<	<	<	1	-	-	-	-
Silanol, trimethyl-	<		<	<	<	<	<	<	<	<	<	<	<	140	188	<	179	<	<	<	<	<	<	<	161	264	1	-			
N,N-Dimethylpivalamide	<		<	<	<	<	<	<	<	<	<	<	<	<	633	<	<	<	<	<	<	<	<	<	<	<		-	-		-
SVOCs (µg/I)															4	4		4	4	4	/	4					4 '			/	4
2-Methylphenol	31					60	45.2	35	12.4	18.6	28.6	17.9	8.3	17.9	<	15.2	<	13.2	47	27	7				28	29	_ '	-	-		-
4-Methylphenol	24					101	60	43	18	16	40	21	11	14	2	23	<	98	47	18	10				47	49	_ '	-	-	-	-
Phenol	281					403	111	14000	9120	15543	5350	3386	11741	11289	236	1167	<	989	449	118	70				243	238	_ '	20600	0.5		-
Phenols (mg/l)						<u> </u>									-	-		4	4	4	4	4					4 '				4
Phenol											17.45	19.36	12.27	42.17	30.10	4.09	4.70	3.26	2.51	0.68	0.31	0.33	0.31	0.16	0.78	0.75	- '	20.6	0.0005		-
Resorcinol Total Cresols					_						<	< <		<		<	<		<	<	<	<	<	< <	<	<	- '		+		+
Total Speciated Phenols HPLC					_						17.5	19.4	12.3	42.2	30.3	4.2	4.8	3.4	2.7	0.8	0.3	0.3	0.3	0.2	0.9	0.8	- '	-	+		+
											17.5	19.4	12.5	42.2	30.3	4.2	4.6	3.4	2.7	0.8	0.3	0.3	0.3	0.2	0.9	0.8	. '				_
Alcohols (µg/I)															/	/		/				/					4 '				4
Methyl Alcohol (Methanol)				<	21,884	34,064	60,293	81,502	213,522	318,135	473,311	416,094	295,630	69,606	76,660	77,671	<	<	<	72,895	44,746	531	<	<	338,837	356,885	1	1000000	-	-	-
Ethyl Alcohol (Ethanol)				<	<	<	114769	<	132181	<	547	9056	4353	14217	256451	57739	<	<	<	<	<	<	<	<	<	<	1 '	1000000	-	-	-
Isopropyl Alcohol (IPA)				2086	8815	169965	118721	130199	151799	84585	160253	59506	37137	51659	30754	16931	1653	291	490	6114	636	826	<	<	16046	16655	1	1000000	-	-	-
n-Propyl Alcohol					<	<	205	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1	-	-		-
n-Butyl Alcohol					<	<	<	<	112	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<] '	-	-		-
Methyl Acetate					<	<	<	<	<	<	14505	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		-	-		-
Tetrahydrofuran (THF)															29238	11878	16416	16971	13394	5882	10899	6101	5897	11050	26817	26799		9310	-	-	115
Field Water Quality Readings																											4				
pH	7.08			-	6.19	7.47	9.42	8.58	9.88	9.66	6.88	9.52	10.43	10	10.91		7.47	8.18	7.44	8.04	8.13	-	7.44	7.61	9.04	-	ا ا		≥6.5-9.5≤	≥6.5-9.5≤	-
Temp (°C)	16.9	-	-	-	17.4	15	15.4	15.4	15.4	-	15	15.5	15.2	15.5		-	-	16	16	16.5	16.3	-	16	16.2	16.4	-	ا ا	-	25		-
EC (μS/cm)	687	-	-	-	1876	1960	2421	1106	1296	1246	1396	1238	1374	703	3311		1120	984	1035	949	653	-	1035	728	1326	-	ا ا	-	1000	2500	800-1875
DO (mg/l)	6.7	-	-	-	-	-	-	1.98	-	-	2.22	1.73	2.4	4.53	4.53		-		1.93		-	-	1.93	-	-	-	ا ا	-	-		-
Redox (mV)	-	-	-	-	-	-199	-280	-214	-184	-	-126	-230	-145		-107	1-	-	-195.4	-202	-35	-112	-	-202	-159.8	-154.5	-	4 '	-	-		-
						DI. I	DI. I																Clear with				1 '	1			
	Grey tint,	Grey tint,				Black	Black	Clear,	Black tint,	Black tint,	Grey tint,	Grey/black	Grey/black	Clear,	1	1	Dark grey,	Clear/	Clear with	Yellow tint,	t, Yellow tint,			Dark grey	Black,			1			
	slight	slight	Grey tint,	Grey tint,	Cloudy,	colour,	colour,	strong	moderate	moderate	moderate	tint,	tint,	moderate	Degrading		mod/strong		black	mod	strong		tint,	tint,	moderate			1			
Observations	organic	organic	strong	moderate	grey, mild			organic	sweet	solvent	chemical	moderate	moderate	chemical	solvent	solvent	chemcial	organic	s.s./mod	organic	organic		moderate		solvent	-	1	N/A	N/A	N/A	N/A
	odour	odour	solvent		H ₂ S odour		solvent	odour	odour	odour	odour	chemical	chemical	odour	odour	odour	odour	odour	chem-org.	odour	odour		organic &		odour		1	1			
				organic		odour	odour	ououi	ououi	ououi	ouour	odour	odour	-300			ououi	ououi	odour	ououl	ououi		chemical	odour	Ououi		1	1			
			odour	odour		ououi	ououi					ououi	ououi						ououi				odour								

VOC (μg/I)												Gr	oundwater F	tesults (ug/l)																	
VOC (μ β/1)													AGW															RTC	IGV	TSV	Gw Regs.
	05/08/16		18/08/16	26/08/16	02/09/16			23/09/16	28/09/16	13/10/16		10/11/16							19/04/17						24/10/17						
Methyl Tertiary Butyl Ether (MTBE)	39.2	12.0	22	12.4	6.5	4.1	5.4	7.8	4.7	5.7	8.5	<	2.7	2.2	4.9	1.6	3.4	<	2.6	3.1	2.1	4.8	3.9	1.9	5.1	7.1		-	30	-	10
Benzene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		-	1.0	1.0	0.75
Toluene	370	205	4703	4226	2520	633	680	594	470	321	233	117	50	12	127	<	<	<	<	<	<	<	<	<	<	<		16600	10		525
Xylenes (meta & para)	<	<	1	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	3	3	<	<	<		-	10	-	-
O-Xylene	<	<	0.6	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	3	3	<	<	<		-	-	-	-
Ethylbenzene	<	<	0.6	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	2	2	<	<	<		-	10	-	-
Chloromethane	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		-	-	-	-
Dichloromethane (DCM)	<	<	98	2402	513	47	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		13900	10		15
2-Chlorotoluene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		-	-		-
Chloroform	<	<	<	4	497	33	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<	<	<		-	12		-
1,1-Dichloroethene (1,1 DCE)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		-	-	-	-
Carbon Dislulphide			<																	Ų.								-	-	*	-
TICs (μg/l)																															
Tetrahydrofuran (THF)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	3702	2376	<	<	<	<	<	<	<		<		9310	-	-	115
Acetone	<	<	3305	4499	5548	2889	4562	5014	13865	11882	4384	3300	387	<	<	<	<	<	<	<	<	<	<	<	<	<		1000000	-	-	-
Acentonitrile	<	<	<	<	521	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		-	-	-	-
Dimethyl sulfide	<	<	<	<	<	220	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		-			-
Benzene, 1,4-diethyl-	<	<	<	<	577	<	133	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		-			-
Benzene, 1,3-diethyl-	107	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		-	-	-	-
Benzene, 1,2-diethyl-	<	<	<	<	<	<	<	121	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		-	-	-	-
Silanol, trimethyl-	<	<	236	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		-	-	-	-
SVOCs (µg/I)																											1				
2-Methylphenol									6								<	<						<	<	<		-			
4-Methylphenol									<								<	<						<	<	<		-	-	-	-
Phenol									38								<	<						<	<	<		20600	0.5	-	-
Phenols (mg/l)																											1				
Phenol	0.08	0.04	0.49	0.30	0.18	0.07	0.08	0.06	0.11	<	<	<	<	<	<	<	<	<	<		<	<	<	<	<	<		20.6	0.0005	-	-
Resorcinol	<	<	<	<	<	<	<	<	0.43	<	<	<	<	<	<	<	<	<	0.02	0.01	0.01	0.05	0.01	<	<	<		-	-	-	-
Total Cresols	<	<	<	<	<	<	<	<	<	0.12	0.06	0.15	<	0.03	<	<	<	<	<	<	<	<	<	<	<	<	1	-	-	-	-
Total Speciated Phenols HPLC	0.2	0.2	0.7	0.3	0.2	0.07	0.08	0.06	0.7	0.12	0.06	0.2	<	<	<	<	<	<	<	<	<	<	<	<	<	<		-	-	-	-
Alcohols (µg/l)																											1			/ /	
Methyl Alcohol (Methanol)	<	<	2,004	2,127	41,738	916	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1	1000000	-	-	
Ethyl Alcohol (Ethanol)	<	<	196393	8,767	9,510	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1	1000000	-	-	-
Isopropyl Alcohol (IPA)	<	<	522,468	613,247	467,054	297,853	314,947	671,785	508,262	397,307	336,567	86,955	14,247	211	<	<	<	<	<	<	<	<	<	<	<	<		1000000	-	-	-
n-Propyl Alcohol	<	<	<	254	1,223	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1	-	-	-	-
n-Butyl Alcohol	<	<	<	<	248	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1	-	-	-	-
Methyl Acetate	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1		-	-	-
Tetrahydrofuran (THF)	9517	11685	11351	16196	46124	25800	18457	22544	18293	15554	12393	9246	7770	6574	5083	3702	2376	<	1188	788	218	307	2150	261	2	4	1	9310	-		115
Field Water Quality Readings	1			1		1					1			ĺ			1			1					i i				i i		
pH	7.85	7.62	7.81	7.35	7.22	7.84	8.12	7.48	8.16	6.85	6.97	6.86	-	-	-	6.85	8	05	7.17	7.39	7.34	6.96	7.36	-	7.2	7.05	1	-	≥6.5-9.5≤	≥6.5-9.5≤	-
Temp (°C)	16.6	16.9	16.8	17	16.5	16.7	18	16.6	16.5	16.3	16.5	17	-	-		15.4		17			7.54	- 0.50			7.2	15.3			25		-
EC (µS/cm)	826	1080	920	789	809	1031	802	976	869	858	1309	899	-	-	-	1647		199	1167	1250	1430	1800	1929		1094	895			1000	2500	800-187
DO (mg/l)		- 1000			- 003	6.38	2.74		4.71	2.22	10.3	2.34	-			1047		-		-	1-50	1000			2034	-	1	-	1000		- 000 10
Redox (mV)	-138.8	-176	-151.5	-199.8	-76	-129	-257	-	-153	-100	-66	-52		-	-					-		-							-		1
Observations	Black tint, moderate organic/ chemical	Dark grey, moderate organic/ chemical	Dark grey, moderate solvent/org	Black, moderate solvent odour	Strong organic/ chemical r odour.	Dark grey, moderate chemical	Dark grey, moderate organic chemical	Mod/ strong organic/ chemical odour,	Clear, mod chemical/ organic	Strong organic/ chemical odour,	Strong organic/ chemical odour,	Mod organic/ chemical odour,	Strong organic/ chemical odour,	Cloudy, strong organic/che			Cloudy, I		organic/che	Clear, fizzy, moderate organic/che	moderate organic/che	organic/che		Clear, moderate chemical/o rganic odour,	Clear, moderate organic/ chemical	Clear, slight organic/ chemical		N/A	N/A	N/A	N/A
	odour	odour	anic odour		Brown tint.	odour	odour	clear. 4.8I/min	odour.	clear.	cloudy.	yellow tint	cloudy.	mical odour	organic/che mical odour	mical odour			mical odou	r mcial odour	mical odour	mical odour	odour	pumping 5I/min	odour	odour					

VOC (μg/l)				ndwater Resul			
				AGW13			
	07/03/18	Duplicate	06/06/18	28/09/18	03/12/18	12/03/1	19 11/06/19
Methyl Tertiary Butyl Ether (MTBE)	1.0	1.0	2.7	1.4	1.1	0.5	
Benzene	<	<	<	<	<	<	
Toluene	<	<	<	<	<	<	<
Xylenes (meta & para)	< <	<	< <	< <	< <	< <	
O-Xylene Ethylbenzene	<		<	<	<	- <	
Chloromethane	-			-			
Dichloromethane (DCM)	<					-	
2-Chlorotoluene	<					- <	
Chloroform	<	<	<	<	<	<	<
1,1-Dichloroethene (1,1 DCE)	<	<	<	<	<	<	<
Carbon Dislulphide							
TICs (μg/l)							
Tetrahydrofuran (THF)	<	<	<	<	<	<	
Acetone	<	<	<	<	<	<	<
Acentonitrile	<	<	<	<	<	<	<
Dimethyl sulfide	<	<	<	<	<	<	<
Benzene, 1,4-diethyl-	<	<	<	<	<	<	<
Benzene, 1,3-diethyl-	<	<	<	<	<	<	< <
Benzene, 1,2-diethyl- Silanol, trimethyl-	< <	<	< <	<	<	< <	- <
SVOCs (µg/I)	_	_		_	_	_	
2-Methylphenol	<	<				<	
4-Methylphenol	<					~	
Phenol	<	<				<	
Phenols (mg/l)							
Phenol	<	<	<	<	<	<	<
Resorcinol	<	<	0.02	<	<	<	
Total Cresols	<	<	<	<	<	<	<
Total Speciated Phenols HPLC	<	<	<	<	<	<	<
Alcohols (µg/l)							
Methyl Alcohol (Methanol)	<	<	<	<	<	<	<
Ethyl Alcohol (Ethanol)	<	<	<	<	<	<	<
Isopropyl Alcohol (IPA)	< <	<	< <	<	<	< <	
n-Propyl Alcohol n-Butyl Alcohol	<		<	<	<	- <	
Methyl Acetate				-			
Tetrahydrofuran (THF)	- 2	-	9	3		- <	
Field Water Quality Readings							
pH	7.5	8	8.51	8.2	8.12	7.86	7.59
Temp (°C)	14.	9	16.1	15.5	-	-	17.3
EC (µS/cm)	102	6	724	937	943	1006	
DO (mg/l)			2.09		-	-	-
Redox (mV)	-		81.2	-	-	-	-
				Dark grey	Dark grov	Dark on	ey Dark grey
	Clear, fiz	v with	Clear, mild		tint, mild to		
Observations	mode		organic/che				te moderate
							che organic/che
							our mical odou
egend							
GV = EPA Interim Guideline Value							RTC - Rem
SV = Groundwater EPA Threshold Screen esults are in bold where they exceed the		IIIIKIIIB W	itei raiailletiit	L value			Results Results

VOC (μg/l)											Groundwate	Results (ug/)													
νος (με/1)											AG	W14											RTC	IGV	TSV	GW Re
	29/02/16	15/03/16	22/03/16	31/03/16	07/04/16	14/04/16	21/04/16	28/04/16	04/05/16	13/05/16	18/05/16	26/05/16	02/06/16	10/06/16	15/06/16	23/06/16	01/07/16	14/07/16	21/07/16	27/07/16	05/08/16	11/08/16				4
Methyl Tertiary Butyl Ether (MTBE)	1.5	3	4.7	4.3	6.6	6.6	6.6	6.1	8.8	6	7.9	9	8.7	7.1	6.7	9	6.1	5	2.6	7.4	7.1	4.5	-	30	-	10
Benzene	7.4	2.8	<	<	<	3.1	3.2	<	<	1.7	2.2	1.4	1.6	<	0.5	<	2.6	2.8	2.9	<	<	<	-	1.0	1.0	0.7
Toluene	7,711	296	<	<	<	58	<	<	<	<	<	<	20	<	<	<	<	<	<	<	<	<	16600	10	-	52
Xylenes (meta & para)	3	2	<	<	3	2	2	<	<	1	2	<	3	1	<	2	3	6	<	2	<	<	-	10	-	-
O-Xylene	1	1.7	<	<	2.6	<	2.2	0.5	0.6	1.1	1.9	1.10	2.6	1.1	1.2	1.6	0.9	1.7	0.8	1.8	<	<	-	-	-	-
Ethylbenzene	<	<	<	<	<	<	<	<	<	<	<	<	0.6	<	<	<	0.6	1.7	<	<	<	<	-	-	-	
Chloromethane	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	
Dichloromethane (DCM)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	13900	10	-	
2-Chlorotoluene	<	4	<	<	<	<	6	<	<	4	<	4	<	<	3	4	<	4	3	<	<	<	-	-	-	
Chloroform	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	12	-	
1,2 Dichloroethane	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	3	3	2
Isopropylbenzene	<	<	<	<	<	<	<	<	<	<	4	<	3	<	<	<	<	<	<	<	<	<	-	-	-	
Vinyl Chloride (VC)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	0.5	0.
Naphthalene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	1	-	
Carbon Dislulphide																							-	-	-	
TICs																										/
Tetrahydrofuran (THF)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	9310	-	-	1
Acetone	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	361	<	<	1000000	-	-	
Dimethyl sulfide	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	
Cyclic octaatomic sulfur	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	
Methyl Isobutyl Ketone	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	
2-Pentanol, 4-methyl-	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	
Triethylamine	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	210	<	<	-	-	-	
SVOCs (μg/l)	<u> </u>		ļ			ļ			ļ		ļ										ļ					
2-Methylphenol		1.2	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<			<	<	<	-	-	-	
4-Methylphenol		<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<			<	<	<	-	-	-	
Phenol		<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<			<	<	<	20600	0.5	-	
Phenols (mg/l)									<u> </u>																	4
Phenol								<	<	0.01	<	<	0.45	<	<	<	<	<	<	<	<	<	20.6	0.0005	-	-
o-cresol								<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	-
Total cresols								<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	-
Total Speciated Phenols HPLC								<	<	<	<	<	0.6	<	<	<	<	<	<	<	<	<	-	-	-	
Alcohols (µg/l)																										4
Methyl Alcohol (Methanol)		<	1,036	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	728	<	<	1000000	-	-	
Ethyl Alcohol (Ethanol)		<	847	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1000000	-	-	
Isopropyl Alcohol		<	507	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1000000	-	-	-
n-Propyl Alcohol		<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	
Ethyl acetate		<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		-	-	-
Tetrahydrofuran (THF)											862	533	849	739	612	676	259	104	476	681	539	515	9310	-	-	1
Field Water Quality Readings																										
pH	6.93	7.21	7.28	6.9	7.93	7.55	6.91	7.14	7.4	7.67	7.44	-	7.43	7.5	6.59	6.75	7.16	6.59	7.29	7.15	8.02	7.82	-	≥6.5-9.5≤	≥6.5-9.5≤	
Temp (°C)	14.7	14.5	14.6	15.8	14.9	-	15.2	14.5	14.6	17.3	15	-	14.7	15.7	16.3	15	14.8	16.3	15.3	15.2	15.1	15.1	-	25	-	-
EC (μS/cm)	985	1107	1169	1235	1005	1230	1111	1176	1116	1024	992	-	1031	1054	1050	1127	1017	1050	834	1017	1009	1231	-	1000	2500	800
DO (mg/l)	-	-		3.45	-	-	7.08	7.92	9.54	3.19	6.65	-	11.75		1.83	-	-	1.83	-		-	-	-	-	-	-
Redox (mV)	-	-111	-109	-94	-136	-	-81	-76	-77	-102	-83	-	-54	-79.4	-75	-95	-77	-75	-96.7	-108.3	-114.5	-97 Class	-	-	-	-
	N ATTAL			Strong		Clear,	Clear,	Clear,	Clear,	Clear,				Clear/very	Clear/				Clear,		Clear,	Clear,	1			
	Mild	Clear, slight	Clear, H2S	organic/	Clear, mild	moderate	moderate	moderate	moderate	moderate	Clear, mild	Clear, mild	Clear, mod	slight	Slight	Clear, mild	Slight	Clear, slight	moderate	Clear, slight	moderate	moderate				Ι.
Observations	solvent &	solvent	odour	waste	solvent	organic	organic	organic	organic	organic	solvent	solvent	organic	solvent/	organic	solvent	organic/che		organic	solvent	organic/che	organic/	N/A	N/A	N/A	l N
	H₂S odour	odour		odour	odour	odour	odour	odour	odour	odour	odour	odour	odour	organic	odour	odour	mical odou	r odour	odour	odour	mical odour	chemical	1			
				Cubui		Jugar	Jugur	Jugar	Cubui	Judui				odour	Judui				Jugur	1	ca. ododi	odour				

VOC (μg/l)											Groundwater	Results (ug/	1)													
νο ι (μg/ι)											AG	W14											RTC	IGV	TSV	Gw Reg
	18/08/16	25/08/16	02/09/16	09/09/16	16/09/16	23/09/16	28/09/16	13/10/16	27/10/16	10/11/16	23/11/16	14/12/16	16/01/17	15/02/17	14/03/17	06/06/17	12/09/17	15/11/17	07/03/18	05/06/18	18/06/18	28/06/18				4
Methyl Tertiary Butyl Ether (MTBE)	13.9	7	3.8	3.2	3	2.8	0.9	2.7	2.3	1.3	1.8	2	3.5	2.4	4.2	3.3	5.3	6.6	2.2	4.8			-	30	-	10
Benzene	<	2.1	2.8	2.9	3.3	3.4	2.1	2.7	2.1	2.5	1.1	3.1	4.8	3.4	2.9	1.7	1	1.2	1.3	0.6			-	1.0	1.0	0.7
Toluene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	6	<	92	4015	<			16600	10	-	525
Xylenes (meta & para)	2	<	1	1	2	2	<	<	2	<	<	<	<	<	<	<	<	<	<	<			-	10	-	
O-Xylene	1.3	<	1.3	1.1	1.4	1.3	<	0.5	1.3	<	<	<	1	<	<	1	<	1	<	<			-	-	-	
Ethylbenzene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<			-	-	-	-
Chloromethane	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<			-	-	-	-
Dichloromethane (DCM)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<			13900	10	-	15
2-Chlorotoluene	<	<	6	<	6	<	<	3	6	3	3	<	4	<	3	<	<	4	<	3			-	-	-	
Chloroform	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<			-	12	-	-
1,2 Dichloroethane	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<			-	3	3	2.25
Isopropylbenzene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<			-	-	-	-
Vinyl Chloride (VC)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<			-	-	0.5	0.37
Naphthalene	<	<	<	<	<	<	<	<	3	<	<	<	<	<	<	<	<	<	<	<			-	1	-	-
Carbon Dislulphide	<																						-	-	-	-
TICs																										
Tetrahydrofuran (THF)	<	<	<	<	<	<	<	<	<	<	<	<	<	276	223	<	<	<	<	<			9310	-	-	115
Acetone	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<			1000000	-	-	-
Dimethyl sulfide	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<			-	-	-	-
Cyclic octaatomic sulfur	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<			-	-	-	-
Methyl Isobutyl Ketone	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<			-	-	-	-
2-Pentanol, 4-methyl-	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<			-	-	-	-
Triethylamine	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<			-	-	-	-
SVOCs (µg/I)									ĺ				ĺ								ĺ					
2-Methylphenol							<								<		<	<	31.1				-	-	-	-
4-Methylphenol							<								<		<	<	38				-	-	-	
Phenol							<								<		<	<	<				20600	0.5	-	-
Phenols (mg/l)																										
Phenol	0.01	<	<	<	<	<	<	0.01	0.02	<	<	<	0.01	0.04	0.01	0.02	<	<	<	<			20.6	0.0005	-	
o-cresol	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0	<			-	-	-	
Total cresols	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0	<			-	-	-	
Total Speciated Phenols HPLC	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<			-	-	-	
Alcohols (μg/l)									ĺ				ĺ								ĺ					
Methyl Alcohol (Methanol)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	907	<	<	<	1000000	-	-	-
Ethyl Alcohol (Ethanol)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1000000	-	-	-
Isopropyl Alcohol	4037	<	<	<	<	30753	2136	654	391	<	<	<	<	<	<	<	<	<	<	<	<	<	1000000	-	-	-
n-Propyl Alcohol	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	T -
Ethyl acetate	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<			-	T -
Tetrahydrofuran (THF)	476	183	182	138	299	370	187	374	67	43	<	68	253	276	223	353	35	33	161	14	116	33	9310		-	115
Field Water Quality Readings	I _	_						_			_							1								
pH	7.8	6.18	7.23	7.73	7.35	7.19	7.64	6.93	7.35	7.16	7.9	8.35	7.07	7	7.1	7.49	6.8	6.81	7	7.64	7.51	7.87	-	≥6.5-9.5≤	≥6.5-9.5≤	-
Temp (°C)	14.8	15.1	15.1	15.1	15.1	15.5	15.5	15.5	15.7	15.7	13.8	16.2	16.2	16.3	16.8	15	15.2	15.2	13.8	21.8	21.3	17.2		25	-	T -
EC (µS/cm)	1386	1115	568	920	798	935	719	802	699	812	775	761	1101	1211	897	1361	1771	2719	1602	2956	2786	3217		1000	2500	800-18
DO (%/mg/l)		-	-	25.5	10.65	-	4.69	3.21	4.93	5.29	8.63	6.15	0.76	1.12	0.4	3.18	4	1.64	4.47	4.21	4.78	4.38		-	-	T -
Redox (mV)	-97.4	225.1	-60	-80.1	-47	-	-74	-75	-80	-87	-60	-76.7	-80.6	-72.4	-20.6	-118	-98	-65	21.5	48.4	-51	20	-	-	-	
																	Brown tint									
	l							Clear,	L		L			Clear, Rare			slight	Clear, slight	Clear,	Grey tint,	Clear, fizzy,					
	Clear,	Clear, slight	Clear,	Clear, mild	Clear, slight	Clear, slight		strong			Clear, slight	Clear, very	Clear, slight	suspended		Clear, fizzy,	organic/	chemical	bubbles,	fizzy,	moderate	Clear,	1			
Observations	moderate	solvent	moderate	organic	chemical	organic	organic	organic	organic	organic	organic	slight	organic	solids,	tint,	moderate	chemcial	odour.	moderate	moderate	organic/	moderate	N/A	N/A	N/A	N/
0030170110113	chemical	odour	organic	odour	odour	odour	odour	odour	odour	odour	odour (not	solvent	odour	Slight	Moderate	chemical	odour,	pumping	organic/che	organic/	chemical	organic	14,17	,	,	1
	odour	Ououi	odour	ououi	Outour	(26l/min)	(24l/min)	(19.5I/min)	(21I/min)	(14I/min)	pumping)	odour	ououi	organic	chemical	odour	pumping	39.5I/min		chemical	odour.	odour				
								(13.31/11111)						odour	odour	1	43I/min	39.31/111111	micai ououi	odour	Pumping		1			

VOC (µg/l)			Groundwater	Results (ug/l W14)	
	28/09/18	03/12/18	12/03/19	Duplicate	11/06/19	Duplicat
Methyl Tertiary Butyl Ether (MTBE)	3.9	2.7	1.7	1.7	2.9	2.8
Benzene	0.7	0.8	1	1	2.3	2.6
Toluene	<	18	<	<	<.5	< .0
Xylenes (meta & para)	<	<	_ <	_ <	_ <	-
O-Xylene	<	<	<	<	<	~
Ethylbenzene	<	<	_ <	<	<	~
Chloromethane	<	<	<	<	<	~
Dichloromethane (DCM)	<	<	<	<	<	~
2-Chlorotoluene		4	4	4	<	3
2-Chlorotoluene Chloroform	<					
1.2 Dichloroethane	<	<	<	<	<	<
						<
Isopropylbenzene	<	<	<	<	<	<
Vinyl Chloride (VC)	<	<	<	<	<	<
Naphthalene	<	<	<	<	<	<
Carbon Dislulphide						
TICs						
Tetrahydrofuran (THF)	<	<	<	<	<	<
Acetone	<	<	<	<	<	<
Dimethyl sulfide	<	<	<	<	<	<
Cyclic octaatomic sulfur	<	<	<	<	<	<
Methyl Isobutyl Ketone	<	<	<	<	<	<
2-Pentanol, 4-methyl-	<	<	<	<	<	<
Triethylamine	<	<	<	<	<	<
SVOCs (µg/I)						
2-Methylphenol	<		<	<		
4-Methylphenol	<		<	<		
Phenol	<		<	<		
Phenols (mg/l)						
Phenol	<	<	<	<	<	<
o-cresol	<	<	<	<	<	<
Total cresols	<	<	<	<	<	<
Total Speciated Phenols HPLC	<	<	<	<	<	<
Alcohols (μg/l)						
Methyl Alcohol (Methanol)	<	<	<	<	<	<
Ethyl Alcohol (Ethanol)	<	<	<	<	<	<
Isopropyl Alcohol	<	<	<	<	<	<
n-Propyl Alcohol	<	<	<	<	<	<
Ethyl acetate	<	<	<	<	<	<
Tetrahydrofuran (THF)	13	19	8	7	<	<
Field Water Quality Readings						
pH	7.95	7.6	6.	69	7.	09
Temp (°C)	15.8	15.8	14	1.8	19	9.7
EC (µS/cm)	3990	2953	19	17	26	68
DO (%/mg/l)	4.03	3,92	51	L.1	3.	01
Redox (mV)	110.4	-84.6		3.7).2
Observations	Clear, moderate organic/ chemical	Clear, slight fizz, moderate organic/ chemical		oderate mical odour	moderate	ight fizz, e organic/ al odour.

IGV = EPA Interim Guideline Value
TSV = Groundwater EPA Threshold Screening Value or Drinking Water Parametric Value
Results are in **bold** where they exceed the EPA IGV

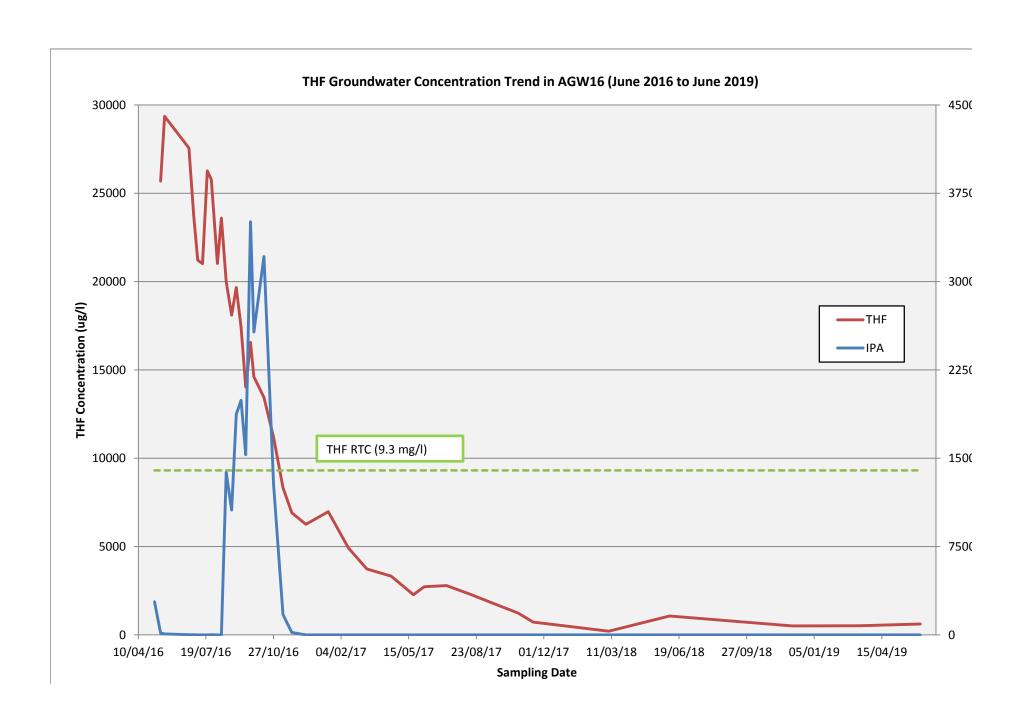
RTC - Remedial Target Concentations Results are marked in brown where they exceeded the RTC Results are italics where they exceed the TSV or Gw Regs SI 366 of 2016

RTC	IGV	TSV	Gw Regs.
	30	-	10
-	1.0	1.0	0.75
16600	10	-	525
-	10	-	-
	-	-	-
-	-	-	-
-	-	-	-
13900	10	-	15
-	-	-	-
-	12	-	-
-	3	3	2.25
-	-	-	-
-	-	0.5	0.375
-	1	-	-
-	-	-	
9310	-	-	115
1000000	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
		-	
	-	-	-
	-	-	-
20600	0.5	-	
20.6	0.0005		
-	0.0003		
-	-		
-	-		
1000000	-	-	-
1000000	-	-	
1000000	-	-	-
	-	-	-
-	-	-	-
9310	-	-	115
-	≥6.5-9.5≤	≥6.5-9.5≤	
	25	-	-
	1000	2500	800-1875
	1000		
	-	-	-
-		-	-

VOC (μg/l)														Groun	iwater Result	s (ug/l)														RTC	IGV	TSV	
						AGW15														AC	SW17									RIC	IGV	150	Gw Regs.
	28/04/16	18/05/16	28/07/16	25/08/16	28/09/16	27/10/16	23/11/16	16/01/17	15/02/17	14/03/17	07/06/17	04/05/16	19/05/16	28/07/16	25/08/16	27/10/16	23/11/16	14/12/16	16/01/17	15/02/17	14/03/17	06/06/17	14/09/17	15/11/17	07/03/18	05/06/18	28/09/18	03/12/18	11/06/19				
Methyl Tertiary Butyl Ether (MTBE)	2.7	3.4	5.0	5.6	2.6	5.9	2.8	3.9	2.5	2.6	2.9	27	16.8	12.4	21.3	6.8	7.7	1.5	12.0	4.6	9.8	6.2	5.3	11.4	6.9	7.5	8.5	13.5	11.7	-	30	-	10
Benzene	<	<	<	<	<	<	6.5	7.0	<	7.6	4.9	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	1	1.0	0.75
Toluene	131	170	297	341	237	356	236	187	181	189	105	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	16600	10		525
Xylenes (meta & para)	5	20	23	21	10	28	18	21	17	24	14	3	<	1	2	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	10		-
O-Xylene	2.5	11.2	12	11.3	4.7	13.6	8.3	10.0	7	9	7	2.4	1.6	1.2	1.3	<	0.6	<	1.0	<	<	<	<	<	<	<	<	<	<	-			-
Ethylbenzene	1.2	4.6	5.5	5.6	3.1	6.8	4.6	4.0	4	4	3	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	10		-
Chloromethane	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-			-
Dichloromethane (DCM)	<	18	26	11	20	20	10	<	<	12	<	<	18	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	13900	10		15
2-Chlorotoluene	<	<	<	<	<	<	<	<	<	<	<	5	4	3	<	<	<	<	2.0	<	<	<	<	<	<	<	<	<	<	_			
Chloroform	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	_	12		
1,2 Dichloroethane	50	45	41	46	<	43	32	34	35	36	26	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	_	3	3	2.25
Isopropylbenzene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	_	1		
Naphthalene		2.1	4.8	5.1	2.8	6.2	2.9	4.0	3.3	3.9	3.2																				1		+
Vinyl Chloride (VC)	· ·	2.1	4.5	5.1	2.5	0.2	2.9	4.0	3.3	3.9	3.2	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		_	0.5	0.375
Tetrahydrofuran (THF)	140	127	<	<	<	<	<	<	143	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	9310		-	115
Acetone	722	414	361	565	427	340	425	1188	143	1116	796	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1000000		- :	115
Dimethyl sulfide	122	<	301	303	427	340	423	127	-	< 1110	/50	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		200000	- :		-
Cyclic octaatomic sulfur	-			-			-	<	-						-	- 2					-	- 2	-	-		-	-	-	-				
Sulfur	-	-	<	<	<	<	-	<	-	-	<	-		-	-	-	-	<	-	-	-	-	-	-	-	-	<	<	<	-		-	
Methyl Isobutyl Ketone	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-		
2-Pentanol, 4-methyl-	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-			
Triethylamine	<	148	210	269	222	119	<	184	138	<	103	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-			-
SVOCs (µg/I)																			1		1												
2-Methylphenol	<	<	<		<							<	<	<											<					-			
4-Methylphenol	<	<	8		<							<	<	<											<					-			
Phenol	<	<	<		2							<	<	<											<					20600	0.5		
Phenois (mg/i)																																	4
Phenol	<	0.02	0.09	0.09	0.11	0.08	0.06	0.09	0.09	0.08	0.12	<	0.02	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	20.6	0.0005		-
Resorcinol	<	<	<	<	<	<	<	<	<	<	<	<	0.01	<	<	<	<	<	<	<	0.01	0.02	<	<	<	<	<	<	<	-			
Catechol	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.02	<	<	0.02	<	0.02	<	0.01	0.01	<	<	<	<	<	-			-
m/p-cresol	<	<	<	0.2	0.34	0.18	0.18	0.28	0.18	0.17	0.30	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-			-
o-cresol	<	0.22	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-			
Total cresols	<	0.22	0.31	0.2	0.34	0.18	0.18	0.28	0.18	0.17	0.30	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-			-
Total Speciated Phenols HPLC	<	0.3	0.4	0.3	0.5	0.3	0.2	0.4	0.3	0.3	0.4	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	-
Alcohols (µg/l)																																	4
Methyl Alcohol (Methanol)	1643	3061	3646	1786	7372	595	1084	4713	3116	<	5740	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1000000			-
Ethyl Alcohol (Ethanol)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1000000			-
Isopropyl Alcohol	13822	31535	46112	28966	51910	29932	30375	27994	20495	7995	22830	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1000000			-
n-Propyl Alcohol	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-			
Ethyl acetate	214	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-			
Tetrahydrofuran (THF)		2161	3791	3794	3996	4974	4511	4803	5234	4154	3686		<	<	<	<	247	70	<	193	<	26	904	<	<	124	<	<	<	9310	-		115
Field Water Quality Readings																																	
DH	12.19	12.01	12.14	12.1	13	-		12.01	11.83	12.25	11.74	7.19	7.68	7.29	7.6	7.17	7.85	8.38	7.34	7.15	7.03	7.23	6.84	6.86	7.22	7.57	7.98	7.28	7.21	1	26.5-9.5≤	26.5-9.5≤	
Temp (*C)	11.3		-	-	15	- 6			13.6	14.5		14.9	15.2	-	14.7	14.6	12.3	13.5	13.8	14.6	14.8	15.1	14.2	15	13.3	15.5	15.6	14.3	15.6	-	25		
EC (µS/cm)	5013	6707	6427	6213	6674	n/m	n/m	6287	<3000	<4000	6179	1118	1030	1085	920	954	921	748	1111	1414	1019	2080	1986	3470	2845	2541	4859	4041	2512	_	1000	2500	800-1875
DO (mg/l)	9.81		-	-	4.42	+			-	-		3.46	0.83			4.65	4.7	6.47	1.36	0.69	0.53	1.06	0.42	0.8	1.86	2.31	1.13	3.22	2.3				+
Redox (mV)	-25		-	-	-160	_	_	1 -	-	-		-110	-106		-67.2	-108	-75	-82.9	_	-71.8	-3.2	-122.7	-120	-26	-42.7	-32.6	111.6	-27.6	-43.7				-
		Brown,	Cloudy,	Cloudy,		1 .		Light	Light	Light	Light												1										
	Brown,	strong	slight	slight	Grey/	Grey/	Brown tint,					Brown tint.	Clear		Clear,	Clear,	Clear,		Clear,	Clear,	Clear,	Clear,		Clear, slight		clear,							
	slight	solvent		orange tint,	orange tint		strong	nge tint,	nge tint,	nge tint,	nge tint,	slight	water.	Clear,	moderate	moderate	moderate	Clear, mod	moderate	Moderate	Moderate	Moderate	chemcial	chemcial	Clear, mild		Clear, mild						
Observations	chemical/	odour,	moderate		moa	mod	oronnie (ch.		strong	strong	strong	chemical	Moderate	orange tint	solvent	solvent	organic	solvent	solvent	organic	organic	organic	odour.	odour.					organic/che	N/A	N/A	N/A	N/A
	organic	poor	solvent	solvent	chemical		mical odou			organic/che		odour	organic	a. unge tillt	odour	odour.	odour	odour	odour	odour	odour	odour	Pumping	Pumping	mical odour		mical odour	mical odour	mical odour				
	odour	recovery	odour	odour	odour	mical odou	ir			mical odour			odour			36I/min	22001		23001	23001	23001	23001	14l/min	14l/min		mical odour							
																														1			

VOC (μg/l)										dwater Resul	(-6/-/								
	18/05/16	28/07/16	26/08/16	28/09/16	27/10/16	23/11/16	14/12/16	16/01/17	15/02/17	14/03/17	06/06/17	14/09/17	15/09/17	07/03/18	06/06/18	28/09/18	04/12/18	12/03/19	11/06/:
lethyl Tertiary Butyl Ether (MTBE)	2.7	2.8	2.8	1.3	1.7	1.7	< <	2.2	1.3	1.3	1.7	2.1	3.9	2.1	2.6	2.8	3.2	1.6	2.2
Benzene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Toluene	-	<	<	<	<	<	<	<	<	<	<	<	-		<	<	<		- <
Xylenes (meta & para)	-	<	<	<		<	<	<	-	<		<			<	<	<		<
O-Xvlene	-	<	<	<	- <	<	<	<	<	-	<	<	<	-	<	<	-		
Ethylbenzene		<	<	<	<	<	<	<		<	<	<	<	<	<	<	<	<	<
Chloromethane		<	<	<	<		<	<		<	<	<	-		<	<		<	<
Dichloromethane (DCM)		<		<		<	<	<		<		<	-					<	
2-Chlorotoluene		<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Chloroform	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
1,2 Dichloroethane	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Isopropylbenzene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Naphthalene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Vinyl Chloride (VC)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
TICs									143										
Tetrahydrofuran (THF)	<	<	<	<	<	<	<	<		<	<	<	<	<	<	<	<	<	<
Acetone	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Dimethyl sulfide	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Cyclic octaatomic sulfur	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Sulfur	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Methyl Isobutyl Ketone	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
2-Pentanol, 4-methyl-	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Triethylamine	<	<	<	<	<	<	<	<	138	<	<	<	<	<	<	<	<	<	<
SVOCs (µg/I)																			
2-Methylphenol	<	<																	
4-Methylphenol	<	<																	
Phenol	<	<																	
Phenois (mg/l)																			
Phenol	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Resorcinol	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Catechol	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
m/p-cresol	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
o-cresol	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Total cresols	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Total Speciated Phenols HPLC	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Alcohols (µg/I)																			
Methyl Alcohol (Methanol)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Ethyl Alcohol (Ethanol)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Isopropyl Alcohol	-	<	<	<	<	<	<	<	<	<	<	<	-		<	<	<		- <
n-Propyl Alcohol	-	<	<	<		<	<	<	<	<	<	<	<	<	<	<		-	- <
Ethyl acetate		<	<	<	<	<	<	<		<	<	<	<	<	<	<	<	<	<
Tetrahydrofuran (THF)		<				<		1.0		<			-						<
Field Water Quality Readings		<	_		_			2.0		· ·	-	_	_	<		<	· ·	_	_
pH pH	7.6	8.03	8.15	7.98	7.31	8.08	8.4	7.35	7.18	7	7.36	6.37	6.8	7.46	7.98	8.4	7.39	6.79	7.4
	13.9	12.8	13	15.2	14.6	10	12.3	11.7	12.3	14.8	12.2	13	12.9	13.3	13.1	13.5	12.3	11.4	13.
Temp (*C)																			13.
EC (µS/cm)	1372	1314	930	1620	1579	1517	1347	1717	2066	1849	1724	1096	1596	2213	1252	1814	1943	1419	
DO (%/mg/l)				9.26	7.32	10	9.3	3.25	4.68	4.22	3.54	-16	1.39	1.79	1.14	4.07	7.2	4.56	-
Redox (mV)	-48	-76.5	-55.6	-54	-62	-25	-54.2	-26.8	-28.4	111.1	-79.5	4.11	-11	-16.7	36.6	96.8	44.7	196.4	-
								Light	Cloudy,	Cloudy,	Cloudy,								
		Brown,	Brown,	Cloudy,	Cloudy,	Cloudy,	Cloudy,	brown/grey	Light	Light	Light	Brown tint.	Brown tint.	Milky	Grey/brow	Milky	Grey/brow	Grey tint,	Very s
	Cloudy	silty, very	silty, very	slight	slight	slight	brown tint,	tint.		brown/grey		moderate	moderate	white,	n tint with	white,	n tint with	mild	brown
Observations	grey, no	slight	slight	organic	organic	organic	slight	moderate	tint,	tint,	tint,	organic	organic	slight	slight	slight			stro
	odour	organic	organic				organic		Moderate	Moderate	Moderate			brackish	organic	brackish	organic	organic	organ
		odour	odour	odour	odour	odour	odour	organic	organic	organic	organic	odour	odour	odour	odour	odour	odour	odour	odo
								odour	odour	odour									

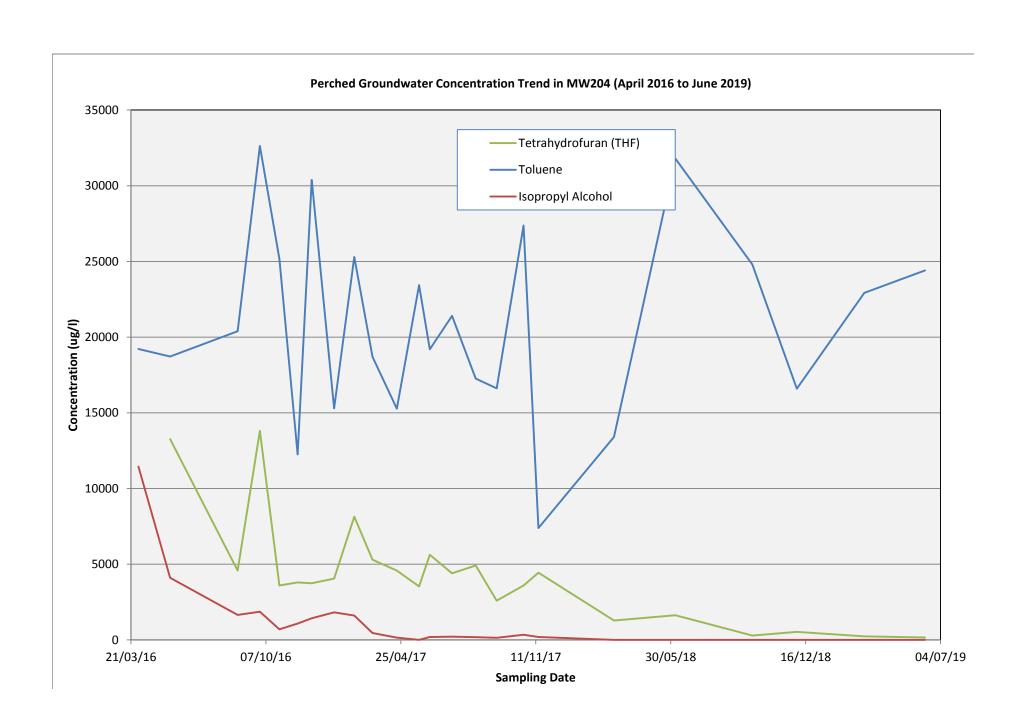
RTC	IGV	TSV	Gw Regs
	30	-	10
	1	1.0	0.75
16600	10		525
	10		
	10		
13900	10		15
	12		
	3	3	2.25
-			
-	1	0.5	- 0.225
-	-	0.5	0.375
9310			115
1000000			
2000000			
-			- 1
-	-	-	-
	-	-	
-			
	-	-	
20600	0.5		
20.6	0.0005		
-			
	-	-	-
	-	-	-
1000000			
1000000			
1000000		-	
9310			115
	≥6.5-9.5≤	≥6.5-9.5≤	
	25		
	1000	2500	800-187
N/A	N/A	N/A	N/A


Legend
IGV = EPA Interim Guideline Value
ITSV = Groundwater EPA Threshold Screening Value or Drinking Water Parametric Value
Results are in **bold** where they exceed the EPA IGV

RTC - Remedial Target Concentations
Results are marked in brown where they exceeded the RTC
Results are italics where they exceed the TSV or Gw Regs SI 366 of 2016

VOC (μg/l)												Ground	lwater Resul	ts (ug/l)												RTC	IGV	TOV	
	04/05/16	13/05/16	19/05/16	24/06/16	01/07/16	07/07/16	14/07/16	21/07/16	27/07/16	05/08/16	11/08/16	18/08/16	AGW16 26/08/16	Duplicate	02/09/16	09/09/16	16/09/16	22/09/16	28/09/16	13/10/16	27/10/16	Duplicate	10/11/16	23/11/16	Duplicate	KIC	IGV	TSV	Gw Reg
Methyl Tertiary Butyl Ether (MTBE)	<	0.2	0.3	24/00/10	1.3	45.5	39.2	17.6	20.7	11.3	5.1	11.8	8.5	g	14.7	6.5	6.9	6.4	5.3	3.5	3.1	2.9	2.6	2.3	2.2	-	30		10
Benzene	0.5	0.7	<	<	<	<	0.6	<	<	<	<	<	<	<	<	<	0.6	0.5	1.1	0.5	<	<	<	<	<		1	1.0	0.75
Toluene	3,926	3.875	3,292	785	271	170	64	<	54	<	<	<	15	<	276	52	169	71	118	114	106	108	60	29	28	16600	10		525
Xylenes (meta & para)	<	<	<	<	2	3	2	2	4	4	2	4	4	4	4	5	5	6	6	3	4	3	3	3	3	-	10		323
O-Xylene	<	<	<	<	1	1.3	0.8	<	1.8	1.9	<	2.2	2.4	2.4	2	2.9	3.1	3.8	3.6	2	1.9	1.8	1.6	2.3	2.2		10		
Ethylbenzene	<	<	<	<	0.8	1.1	0.7	<	0.6	<	<	<	<	<	1.3	<	1.8	1	2.1	1.9	2	1.9	1.8	1.7	1.6		10		
Chloromethane	17	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		10		
Dichloromethane (DCM)	28336	773	190	1397	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	13900	10		15
2-Chlorotoluene	<	<	<	<	<	<	<	<	<	<	<	<	5	5	3	<	<	<	10	10	11	10	10	13	12	-	10		
Chloroform	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		12		
1,2 Dichloroethane	-	-		<	-		-	-	-	<	-	<	-	<	-	<	<	<	<	<	<	<	<	<	<		3	3	2.25
Isopropylbenzene	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
Vinyl Chloride (VC)	<	0.2	0.2	0.3	0.2		0.2		0.2	<	<			<	<			<	0.1	<		<	-	<	-			0.5	0.375
TICs	_	0.2	0.2	0.5	0.2	_	0.2		0.2	_	_		_				_	_	0.1	_		_	_	_	_	-		0.5	0.37
Tetrahydrofuran (THF)	2084	2560	2790	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	9310	-		115
Acetone	131	2300	2/30	<		-				-			417	451	1557	988	1882	1707	2433	2290	3554	3608	710	<		1000000			115
Dimethyl sulfide	131						<			<	<		41/	451	1557	988	1882	1/0/	2433	2290	3554	3008	/10	<	<	1000000	-	_	+
Cyclic octaatomic sulfur	1042	2290	~	271	<		<			<	<		<	<	<		<	<	<	<		<	<	<	<	-	-		+
Sulfur	1042	375		2/1													<		<			<		<	<	1	-	-	+
Methyl Isobutyl Ketone	<	3/5	~	- <	<		<			<	<		<	<	<		<	<	<	<		<	<	<	<	-			+
2-Pentanol, 4-methyl-	<		~		<		<			<	<		<	<	<		<	<	<	<		<	<	<	<	-		-	-
	<		~		<		<			<	<		<	<	<		<	<	<	<		<	<	<			-	-	-
Triethylamine	<	٠	٠	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	-
SVOCs (μg/l)	40.0			0.5																									4
2-Methylphenol	19.3	16.5	61.2	3.5	3.1	<			<										2							-	-	-	-
4-Methylphenol	31	27	40	8	2	<			<										<								-	-	-
Phenol	16930	6497	5545	47	3	<			<										<							20600	0.5	-	-
Phenols (mg/l) Phenol	44.55	5.66	4.42	0.38	0.06	0.05	0.01		<	<	<	<	<	<	<	<	<	<	<		<	<	<			20.6			4
	44.55						0.01	<							0.34					< <		<	<	< <	<	20.6	0.0005	-	-
Resorcinol		0.65	0.33	0.03	0.27	0.29				-	0.22	0.52	0.02	0.02		-	-	-	-				_			-	-	-	-
Catechol	<		<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	< 0.05	<	<	-	-	-	-
o-cresol	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.03	0.03	0.05	<	<	-	-	-	
Total cresols	44.6		4.0			< .	0.2	<	<	< .	< .	< .	<	<	0.3	<	<	<	<	<				<	<	-	-	-	-
Total Speciated Phenols HPLC	44.6	6.3	4.8	0.4	0.3	0.3	0.3	<	<	0.3	0.2	0.5	<	<	0.3	<	<	<	<	<	<	<	0.05	<	<		-	-	-
Alcohols (μg/l)	10010																												4
Methyl Alcohol (Methanol)	40645	<	<	<	3267	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1000000	-	-	-
Ethyl Alcohol (Ethanol)	<	<	<	<	<	_ `	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1000000	-	-	-
Isopropyl Alcohol	28214	1470	789	208	127	<	<	<	152	<	<	137975	105962	120703	187408	199252	153048	350811	257286	321323	127921	112945	17331	2099	2132	1000000	-	-	-
n-Propyl Alcohol	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	-
Ethyl acetate	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		-		-
Tetrahydrofuran (THF)		25692	29362	27564	23734	21217	21022	26269	25781	21026	23598	20008	18100	17912	19665	17413	14035	16564	14615	13445	11193	9585	8335	6916	6819	9310	-	-	115
Field Water Quality Readings														00						4.00		25							
pH	7.86	-	7.98	7.79	8.08	7.64	-	7.88	8.27	8.06	7.95	7.98	8.		7.95	7.88	7.83	7.66	8.08	6.37		.25	6.91	7.9		-	≥6.5-9.5≤	≥6.5-9.5≤	
Temp (°C)	14.4	-	14.9	14.7	15.2	16	-	14.7	14.7	15.1	14.8	14.4		1.7	14.7	14.8	14.2	14.5	14.2	13.9		3.9	13.8	11.8		-	25		-
EC (μS/cm)	1238	-	1034	1010	1002	906	-	880	910	937	1074	1080	6	82	671	1108	1143	1486	1247	1221		757	1349	1537		-	1000	2500	800-18
DO (mg/l)	6.85	-	2.45	-	-	1.7	-	-	-	-	-	-		-	-	5.27	8.23	-	4.51	6.9		.21	4.48	4.33		-	-	-	-
Redox (mV)	-105	-	-113	-121	-4.5	-123	-	-136.7	-138.5	-154.8	-138	-117.6	-11	2.8	-85	-106	-70	-	-88	-60	-	48	-97	-74		-		-	-
Observations	Black tint, strong chemical odour	-	Black colour, froth, strong organic odour	Brown tint, mod-strong organic odour		Clear, moderate roganic & chemical odour	-	Clear, fizzy. Mild organic odour	Clear, fizzy, moderate organic odour	Clear, fizzy, moderate organic/ chemical odour	Clear, fizzy, moderate organic/ chemical odour			, moderate codour	Clear, fizzy, moderate organic odour	Clear, fizzy, moderate organic/ chemical odour	Clear, fizzy, slight chemical odour	Moderate organic odour, fizzy, clear (68l/min)	Clear, moderate chemical odour, (68I/min)	Clear, moderate chemical odour, (68I/min)		d chemical (68I/min)	Clear, mild organic odour, (69l/min)	Clear, no odour, (pumping 67I/min)		N/A	N/A	N/A	N/A

VOC (µg/I)											Gr		r Results (ug/ W16)											RTC	IGV	TSV	Gw Regs
	14/12/16	Dunlicate	16/01/17	Dunlicate	15/02/17	Blank	14/03/17	19/04/17	22/05/17	Duplicate (07/06/17			Duplicate	14/09/17	Duplicate	14/09/17	24/10/17	Duplicate	15/11/17	Dunlicate	07/03/18	05/06/19	Duplicate				GW Keg
Methyl Tertiary Butyl Ether (MTBE)	1.9	2	2.4	2.6	1.3	Sidilk <	1.4	1.9	2.2	2.2	1.9	2.0	3.4	3.6	2.4	2.4	1.4	1.9	1.9	2.5	2.4	1.8	2.1	2.1		30		10
Benzene	<	<	<	<	<	<	<	<	<	<	<	<	5.4	<	<	< <	<	<	<	<	<	<	<	<		1	1.0	0.75
Toluene	-		-		-	-	-	-	-	~	-		-		-		-	-	-		-	-	-	~	16600	10	1.0	525
Xylenes (meta & para)	2	2	4.0	4.0	2	-	2	2	2	2	-		3	3	3	3	-	-	-		-	-	-	2	10000	10		323
O-Xylene	2	2	3.0	3.0	1	-	1	2	2	2	2	2	4	4	3	3	-	2	2	2	2	~	2	2		10		
Ethylbenzene	1	<	2.0	2.0	1	<	1	1	2	2	1	1	2	2	1	1	-	<	<	<	<	~	<	<		10		
Chloromethane	<		<	<		-	<	<		<	<	<	<	<	<	<	-	<	<		<	~		~		10	- :	-
Dichloromethane (DCM)	-		-	<	-	<	-	-	-	~	-	~	-		-		-	-	-		-	-	-	~	13900	10	-	15
2-Chlorotoluene	9	10	13.0	13.0	9	-	-	10	11	11	11	11	18	18	15	16	15	10	10	9	0	-	12	12	13300	10	- :	15
Chloroform	<	<	15.0	< 15.0	<	13	-	<	< 11	<	<	<	<	<	- 15	<	< 15	<	<	<	<	-	< <	< 12		12	- :	-
	-		-		-	- 15	-		-	~	-	~		~	-			-		-	~		-			2	3	
1,2 Dichloroethane	-									-	<		<			_						_	-			3	- 3	2.25
Isopropylbenzene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<				<	<	<		-	-	
Vinyl Chloride (VC)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		-	0.5	0.375
TICs																												
Tetrahydrofuran (THF)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	9310	-	-	115
Acetone	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1000000	-	-	-
Dimethyl sulfide	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	
Cyclic octaatomic sulfur	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	-
Sulfur	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	-
Methyl Isobutyl Ketone	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	-
2-Pentanol, 4-methyl-	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	-
Triethylamine	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		-	-	-
SVOCs (µg/I)																												
2-Methylphenol																										-	-	-
4-Methylphenol																										-	-	
Phenol																									20600	0.5		-
Phenols (mg/l)																												
Phenol	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.24	<	<	<	<	<	<	<	<	20.6	0.0005	-	-
Resorcinol	<	<	<	<	<	<	0.02	0.05	0.05	0.05	<	0.05	0.13	0.14	0.13	0.13	<	<	<	<	<	<	0.07	0.07		-		
Catechol	<	<	<	0.05	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		-		
o-cresol	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		-		
Total cresols	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		-		
Total Speciated Phenols HPLC	<	<	<	<	<	<	<	<	<	<	<	<	0.1	0.1	0.1	1.4	<	<	<	<	<	<	<	<		-		
Alcohols (µg/I)																												
Methyl Alcohol (Methanol)	<	<	<	<	<	<	1269	<	<	<	<	<	<	<	-	-	<	<	<	<	<	<	<	<	1000000			
Ethyl Alcohol (Ethanol)		-	-		-	<	1203		-	-	2		-		-	-	-	-	-	-		-		~	1000000			_
Isopropyl Alcohol	-		-	~	-	-	-		-	~	-				-	-	-	-	-	-	-	-	-	~	1000000		- :	-
n-Propyl Alcohol	-		-	<	-	~	-	-	-		-				-		-	-	-		~	-	~	-	1000000		- :	-
Ethyl acetate	-		-		-	~	-	-	-		-				-		-	-	-		~		<	-			- :	-
Tetrahydrofuran (THF)	6263	6348	6979	6324	4921	<	3737	3324	2279		2732	2695	2709	2790	2307	2286	1831	1203	1235	730	743	210	1070	1044	9310	- 1	- :	
Field Water Quality Readings	0203	0348	6979	0324	4921	· ·	3/3/	5324	22/9	22/0	2/32	2095	2709	2790	2307	2280	1831	1203	1235	/30	743	210	1070	1044	9310	-	-	115
	2.72		7.20		7.53		6.70	7.40	7.6		7.04		7.62			.07	3.54	0.25	0.3	, i	.5	7.76		.97				
pH (00)	7.72		7.26	_	7.53		6.79	7.48	7.6		7.84		7.63			14	7.54	8.25	8.3		1.1	7.76		6.1		≥6.5-9.5≤	≥6.5-9.5≤	
Temp (°C)	13.9		13.9	_	14		14.3	15.2	15.5		14.4		15			167	14	752	- 000		1.1	13.2			-	25	-	-
EC (μS/cm)	1547		2114		1830		1483	1917	2362		2189		1175				940	753	886		93	962		106	-	1000	2500	800-1
DO (mg/l)	4.12		7.3		1.41		1.32	2.01	1.17		1.39		1.56			.31	1.67	-	-		93	1.63		.24	-	-	-	-
Redox (mV)	-101.1		-98.2		-91.2		163.2	33.2	-159.4		-147.2		-147.6			153	-145	-	-	-	89	-5.6	5	5.1	-		-	-
Observations	Clear, fizzy, slight solvent odour		Clear, fizzy, mild chemical odour		Clear, Fizzy		Clear, No odour	Clear, No odour	Clear, fizzy, no odour		lear, fizzy, mild chemical odour		Clear, fizzy, slight solvent odour			ght solvent dour	Clear, slight organic/ chemical odour,	Clear	, slight emical odour	Clear, mode od		Clear, bubbles with slight organic/ch emical	organic	, moderate chemical our	N/A	N/A	N/A	N/A


VOC (μg/l)		Groundwate		g/I)
	02/12/19		12/02/10	11/06/19
Methyl Tertiary Butyl Ether (MTBE)	1.6	Duplicate	13/03/15	1.4
Benzene	<	<	<	<
Toluene	<	<	<	<
Xylenes (meta & para)	<	<	<	<
O-Xylene	2	2	1	1
Ethylbenzene	<	<	<	<
Chloromethane	<	<	<	<
Dichloromethane (DCM)	<	<	<	<
2-Chlorotoluene	10	10	4	5
Chloroform	<	<	<	<
1,2 Dichloroethane	<	<	<	<
Isopropylbenzene Vinyl Chloride (VC)	<	< <	< <	< <
TICs				
Tetrahydrofuran (THF)	<	<	<	<
Acetone	<	<	<	<
Dimethyl sulfide	<	<	<	<
Cyclic octaatomic sulfur	<	<	<	<
Sulfur	<	<	<	<
Methyl Isobutyl Ketone	<	<	<	<
2-Pentanol, 4-methyl-	<	<	<	<
Triethylamine	<	<	<	<
SVOCs (µg/l)				
2-Methylphenol				
4-Methylphenol				
Phenol Phenols (mg/l)				
Phenol	<	<	<	<
Resorcinol	<	<	<	<
Catechol	<	<	<	<
o-cresol	<	<	<	<
Total cresols	<	<	<	<
Total Speciated Phenols HPLC	<	<	<	<
Alcohols (μg/l)				
Methyl Alcohol (Methanol)	<	<	<	<
Ethyl Alcohol (Ethanol)	<	<	<	<
Isopropyl Alcohol	<	<	<	<
n-Propyl Alcohol	<	<	< <	< <
Ethyl acetate Tetrahydrofuran (THF)	508	507	514	617
Field Water Quality Readings	508	507	514	617
pH		7.81	7.4	7.49
Temp (°C)		14.5	8.9	19.4
EC (µS/cm)		515	922	1556
DO (mg/l)	-	1.47	2.54	2.45
Redox (mV)		12.8	90.9	61.7
				t clear, slight
	Clear fizz	y, moderate	fizz,	fizz,
Observations		/ chemical	moderate	
Observations		dour	organic/cl	
			emical	emical
			odour	odour
egend				
GV = EPA Interim Guideline Value				
		- Deletion - M		Auto Melico
TSV = Groundwater EPA Threshold Scree Results are in bold where they exceed th		or Drinking W	ater Parame	tric Value

														Perched (Groundwate	r Results (ug	g/I)																
VOC (μg/l)												N	1W204												MW208	MW215		MW217		RTC	IGV	TSV	Gw Regs
	01/04/16	18/05/16	26/08/1	6 28/09/16	27/10/1	6 23/11/16	14/12/	16 16/01/1	7 15/02/17	14/03/17	19/04/17	22/05/17	07/06/1	10/07/17	14/08/17	14/09/17	24/10/17	15/11/17	07/03/18	06/06/18	3 28/09/18	03/12/18	13/03/19	11/06/19	07/04/16	21/04/16	21/04/16	18/05/16	26/08/16				
Methyl Tertiary Butyl Ether (MTBE)	<	<	<	0.6	<	<	<	<	<	4.3	5.7	4.4	2.3	2.2	5.0	1.2	2.2	2.8	<	<	<		<		<		<	<	<	-	30	-	10
Benzene	82.7	42.1	25.1	24.6	19.7	13.6	21.1	20.4	25.1	21.2	23.1	27.5	20.5	22.3	27.7	21.5	27.4	30	19	20.8	21.8	23.5	22.6	15.2	31.6	23.6	169.4	111.3	111.1	-	1	1.0	0.75
Toluene	19,212	18,721	20,392	32,630	25,167	12,247	30,38	2 15,293	25,293	18,699	15,278	23,436	19,190	21,403	17,261	16,617	27,371	7395	13408	31790	24791	16596	22925	24407	14.319	67,667	114,176	19,597	38,717	16600	10	-	525
Xylenes (meta & para)	59	33	24	55	34	32	27	34	46	46	36	34	29	33	55	30	29	30	12	26	20	20	22	19	26	139	<	4	<	-	10	-	-
O-Xylene	5.8	3.3	3.2	6.3	3.2	4.1	3.0	4.0	6.0	6.0	4.0	4.0	4.0	5.0	11	7	5	5	2	4	3	3	3	3	3.5	17.1	<	<	<	-	- '	-	-
Ethylbenzene	<	5	4.4	10.9	5.1	4.7	5	6.0	8	8	5	5	5	5	11	7	5	6	3	5	3	3	4	4	7.5	26.9	<	2	<	-	10	-	-
Chloromethane	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		<	<	<	<	<	-	- '	-	-
Dichloromethane (DCM)	<	<	<	<	6.0	<	<	<	<	<	20	15	<	<	<	<	<	<	5708	18	17	<	<		<	<	<	<	<	13900	10	-	15
1,2-Dichloroethane	<	<	<	<	<	<	<	8.0	<	<	4.0	10.0	<	<	35	<	<	9	<	<	7	<	<	2	<	<	<	<	<	-	3	3	2.25
2-Chlorotoluene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		<	<	<	<	<	-	-	-	-
Vinyl Chloride (VC)	<	<	0.3	<	<	0.4	1.7	0.5	0.4	0.4	0.3	0.6	0.4	0.3	1.8	3.4	0.5	0.5	<	<	<	<	<	0.1	<	<	<	<	<	-	-	0.5	0.375
TICs																																1	
Tetrahydrofuran (THF)	1248	1133	<	<	<	<	<	<	<	5302	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1571	2729	<	<	<	9310	-	-	115
Acetone	124	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	366	<	<	<	<	1000000			
Dimethyl sulfide	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	-
Cyclic octaatomic sulfur	167	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	-
Methyl Isobutyl Ketone	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	-
Silanol, trimethyl-	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	-
2-Pentanol, 4-methyl-	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	-
SVOCs (µg/I)																																1 7	
2-Methylphenol	415	740		<				T)								<					<	Ĭ	<		298	325	162	3200		-	-	-	-
4-Methylphenol	345	720		<												<					<		<		272	314	200	2900		-	-	-	-
Phenol	4	<		<						<						<					<		<		25	<	<	420		20600	0.5	-	_
Phenols (mg/l)																				1							1						
Phenol		<	<	0.02	0.03	<	<	<	0.02	<	0.01	<	0.15	0.07	0.07	0.07	0.02	0.04	<	0.06	0.08	<	<	0.02		<	<	<	0.01	20.6	0.0005	-	-
m/p-cresol		0.71	1.97	0.41	1.2	0.97	1.48		0.87	0.87	4.33	12.44	9.02	5.86	-	3.01	1.65	2.4	1.36	3,45	1.34	0.95	<	1.04		0.55	0.42	6.68	18.23		0.0000		
o-cresol		0.66	1.87	0.41	1.44	1.09	1.92		1.06	0.97	6.01	17.24	11.53	11.06		4.39	3.31	3.6	2.21	6.96	8.75	5.33		6.68		0.46	0.33	6.28	20.04	-			
Total cresols *		1.37	1.07	0.41	2.64	2.06	3.4		1.93	1.84	10.34	29.68	20.55	16.92		7.4	4.96	6	3.57	10.41	9.91	6.28		7.72		1.01	0.75	12.96	20.04	-		-	+
			3.8	0.82	2.04	2.1	3.4			1.8	10.34	30.5	20.33	17	0.2	7.5	5.0	6	3.6	10.41	10.0	6.3		7.7		1.00	0.80	13.00	38				-
Total Speciated Phenols HPLC		1.4	3.8	0.8	2.7	2.1	3.4	4.3	2	1.8	10.4	30.5	20.8	17	0.2	7.5	5.0	ь	3.b	10.5	10.0	6.3	٠	7.7		1.00	0.80	13.00	38	-	-	-	_
Alcohols (μg/l)	2.244	550	5.706		2.404	5.60	004				2.047	4.250							4 000 747	7004	0.00				445.752	4.424				4000000			4
Methyl Alcohol (Methanol)	2,244	558	5,736	<	3,404	562	981		<	<	3,847	1,259	<	<	<	<	<	<	1,020,717	761	826	<		<	145,752	1,131	<	<	<	1000000	-	-	-
Ethyl Alcohol (Ethanol)	<	<	4,966	<	<	<	<	<	<	<	622	<	<	<	<	<	<	<	<	4,278	<	<	<	<	823	<	<	<	<	1000000	-	-	-
Isopropyl Alcohol	11,451	4,100	1,655	1,864	703	1,081	1,425	1,818	1,608	461	152	<	190	212	187	144	341	194	<	587	<	<	<	<	75,934	957	<	<	<	1000000		-	-
n-Propyl Alcohol	<	<	4576	42004	2505	< .	<	< .	< .	< .	< .	< .	< .	<	<	< .	< .	<	< .	4607	< .	< .	< .	466	<	<	<	< .	< .	- 0240	-	-	
Tetrahydrofuran (THF)		13271	4576	13801	3595	3793	3742	4047	8142	5302	4579	3534	5620	4404	4914	2596	3599	4444	1279	1627	286	532	235	166				520	1443	9310	-	-	115
Field Water Quality Readings																																	
pH		7.36	6.93	-		-		6.84	7.6	6.65	6.69	6.85	6.88	6.91	6.93	6.48	6.97	6.89	7.34	6.73	-	7.34	7.31	7.24		7.22	6.79	7.13	7.16		36 5 0 54	≥6.5-9.5≤	
Temp (°C)					_		-		13.5	14.8	-		,,,,,,			-			11.2	14.1				13.9			100	120			25	20.3-3.33	+ -
EC (µS/cm)	-	923	750	-	-		-	1047	1213	1576	1379	1295	1119	993	1309	1235	1185	1088	866	1103	-	1002	925	778	-	900	1127	886	1134	-	1000	2500	800-187
DO (mg/l)		323	,50	-	-	-	-	10-17	11.13	15.0	1575	1233			1303	12.53	1103	1000	800	1103	-	1002	323		-	300		555	1104	-	1000	2300	300-1873
Redox (mV)	-		-	-	+	+	-		+ -	-	-			+ -		+ -		-		-				-	-					-			+
Observations	Very Strong organic odour,	Silty, black, mod to strong	Grey/ orange tint, strong	Silty, grey mod to strong solvent	silty, strong solvent	Silty grey, slight organic/ solvent	, Grey/bi wn, strong chemic	silty, moderate	solvent	Clear, Moderate solvent	Dary grey, cloudy, moderate solvent	moderate solvent	moderate	Dark grey, silty, moderate solvent	Dark grey, silty, moderate solvent	silty,	Brown tint, silty, moderate solvent	Grey silty, strong solvent	strong solvent	Brown, silty, strong solvent	Orange tint, strong solvent	rown tint, moderate to strong	Grey/oran ge tint, moderate solvent	silty,	Silty, black, mod to strong	Silty, brown, moderate solvent	strong	Silty, grey/black , strong solvent	solvent	N/A	N/A	N/A	N/A
	silty	solvent odour	solvent odour	odour	odour	odour	odour		odour	odour	odour	odour	odour	odour	odour	odour	odour	odour	odour	odour	odour	solvent odour	odour	odour	solvent odour	odour	solvent odour	odour	odour				

No. Section
Thyselegical plays Early
Bensone
Tolume
Sylene, (meta & para)
Display
Ethylerement
Chloromethane C
Dichloromethane (DCM)
1.2-Dichrorethane
2.Chlorotolune
Control (C)
Vind Chloride (VC)
Ticallydrofuna (THF)
Tetralygrofuran (THF)
Actone
Dimethy sulfide
Cyclic Catatomic sulfur
Methyl (sobuly) Netone
Siland, trimethyl-
2.Pentanol.4-methyl-benol
SynCeting(f)
2. Methylphenol 10 <
Active Health 10
Phenol
Phenols (mg/l)
Phenol
Mily-resol C
Continue Continue
Total cresols** C
Cotal Speciated Phenois HPLC
Methyl Alcholi (lighthand) <
Methyl Alcohol (Methanol)
Ethyl Alcohol (Ethanol)
Isopropy Alcohol <
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Tetrahydrofuran (THF)
Held Water Quality Readings PH
Temp (°C) 13.7 13.9 14.4 14.1 13.1 12.9 13.4 12.4 13 13.1 13.8 13.9 11.3 13.2 14.4 13.8 12.5 14.5 - 25 - EC (µS/cm) 1208 905 1533 1480 1528 1414 1541 2069 1279 1515 629 1252 941 908 1705 1218 799 1359 - 1000 2500 800-1875
Temp (°C) 13.7 13.9 14.4 14.1 13.1 12.9 13.4 12.4 13 13.1 13.8 13.9 11.3 13.2 14.4 13.8 12.5 14.5 - 25 - EC (µS/cm) 1208 905 1533 1480 1528 1414 1541 2069 1279 1515 629 1252 941 908 1705 1218 799 1359 - 1000 2500 800-1875
EC (µS/cm) 1208 905 1533 1480 1528 1414 1541 2069 1279 1515 629 1252 941 908 1705 1218 799 1359 - 1000 2500 800-1875
Redox(mV) -19.6 -27.8 -31 -57 -22 -0.2 -12.7 -13.6 31.7 -43.4 23.6 -2.6 76.3 -12.7 71.6 -7.6 63.3
Grey/bro wn, very wn, very silty, silty, sight of organic odour od

VOC (µg/I)									Perched (er Results (u	g/l)							
VOC (μg/1)										MW22									
											07/06/17						03/12/18		
Methyl Tertiary Butyl Ether (MTBE)	<	156	19	5.4	6.6	3.9	3.0	3.8	1.5	1.8	1.8	1.4	1.5	1.1	2.7	1.8	0.7	0.2	0.9
Benzene Toluene	1,847	840	3,093	486	235		<	<			<	<				<	<	<	
Xylenes (meta & para)	1,047	640	3,093	400	233	-		-	-	-			-				-		-
O-Xylene	-		-	-	<		-	-	-	-	-	<		-		<	-	-	-
Ethylbenzene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Chloromethane	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Dichloromethane (DCM)	505	<	62	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
1,2-Dichloroethane	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
2-Chlorotoluene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Chloroform	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Vinyl Chloride (VC)			<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
TICs																			
Tetrahydrofuran (THF)	1343	<	<	<		<	<	<	<	2161	<	<	<	<	<	<	<	<	<
Acetone	<	<	5741	28919	17255	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Dimethyl sulfide	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Cyclic octaatomic sulfur	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Methyl Isobutyl Ketone	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Silanol, trimethyl-	<	108	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
2-Pentanol, 4-methyl-	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
SVOCs (µg/I)																			
2-Methylphenol	245	11		<												<		<	
4-Methylphenol	71	4		<												<		<	
Phenol	4500	16		<												<		<	_
Phenols (mg/l)	20.40	0.04	0.00																
Phenol	20.19	0.04	0.02	<		<	<	<	<	<	<	<	<	<	<	<	<	<	<
m/p-cresol	<	<	<	<	0.23	<	<	<	<	<	<	<	<	<	<	<	<	<	<
o-cresol	<	0.1	0.03	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Total cresols	< .		0.03	<	0.23	<	<		<	<	<	<	<	<		<	<	<	<
Total Speciated Phenols HPLC	20.20	<	<	<	0.23	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Alcohols (μg/l)		4044																	
Methyl Alcohol (Methanol)	< .	1844	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Ethyl Alcohol (Ethanol)	6849	< .	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Isopropyl Alcohol	6487	1431	617182				<	<	<	<	<	<	<	<	<	<	<	<	<
n-Propyl Alcohol	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Tetrahydrofuran (THF)	15635	17361	16475	23097	17499	13083	9320	5847	3300	2161	85	14	14	<	<	<	<	<	<
Field Water Quality Readings		7.46	2.42					6.07	6.70	6.70	6.60	6.70	6.74	7.00	7.00	0.00	7.60	7.00	7.00
pH T (%C)	-	7.46 15.9	7.47 16.3	-	+ :	-		6.87	6.73 14.8	6.78 16.4	6.69	6.72	6.74 15.1	7.08 12.5	7.98 14.4	8.33 16.7	7.62 15	7.06 13.3	7.33 15
Temp (°C)	-	832	705	-	-	-	-	1177	1016	1065	1276	1373	786	731	638	1022	671	449.6	963
EC (μS/cm)		- 032	705	-	-		-	11//	1010	1002	12/0	13/3	1.41	6.6	2.38	3.3	5.02	4.03	903
DO (%/mg/l)	-	-119.2				-					-	-	-54	146.4	75.5	85.4	-56	97	-
Redox (mV)		-119.2	-121.0	-	+				-	-		-	-54	140.4	/5.5	03.4	-50	37	-
					C 1														
		Grey/	Grey/	Grey/	Grey/	Grey/	Grey/bro	Grey/bro	Grey/bro	Grey/bro	Grey/bro		Sandy						
		brown,	brown.		brown,	brown.		wn, very				brown,	brown,	Sandy	Grey/brow	Sandy		Red/brow	Orange/bro
		silty,	silty,	silty, mo	silty,	silty mor		d silty, mod				sandy,	mild	brown	n, silty with	brown	Brown,	n sint,	wn tint,
Observations		slight	moderat		slight	organic/		c organic/o			organic/c	mod	solvent,	with no	slight	with no	silty with	silty, no	silty, no
		organic	organic			chemical			hemical	hemical		chemical	mod	odour	organic	odour	no odour	odour	odour
		odour	odour	odour	chemica	odour	odour	odour	odour	odour	odour	odour	organic	ououi	odour	ououi		ododi	ououi
		ododi	ououi	ododi	odour	Ououi	ououi	Ououi	Ououi	Ououi	ododi		odour						
egend																			
GV = EPA Interim Guideline Value							RTC - Ren	nedial Targe	Concentati	ions									
TSV = Groundwater EPA Threshold Scree	ning Value	or Drinking	Water Par	ametric Val	ue.						eeded the RT	r							
lesults are in bold where they exceed the											or Gw Regs		116						
									unity can		a. a negs								

													Other	Water Resul	ts (ug/l)																
VOC (μg/l)	Process Drain												Complia	nce Point												Foul	Drain	RTC	IGV	TSV	Gw Reg
	31/03/16	31/03/16	25/06/16	27/07/16	28/07/16	27/10/16	23/11/16	15/12/16	16/01/17	15/02/17	14/03/17	22/05/17	06/06/17	10/07/17	14/08/17	12/09/17	24/10/17	14/11/17	05/06/18	18/06/18	28/06/18	28/09/18	03/12/18	13/03/19	11/06/19	13/10/16	27/10/16				
Methyl Tertiary Butyl Ether (MTBE)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<			<	<	<	<	<	<	-	30	-	10
Benzene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<			<	<	<	<	<	<	-	1	1.0	0.75
Toluene	89	<	<	<	19	<	<	<	<	<	<	<	<	<	<	<	<	<	<			<	<	<	<	38	37	16600	10	-	525
Xylenes (meta & para)	1	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<			<	<	<	<	<	<	-	10	-	-
O-Xylene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<			<	<	<	<	<	<	-	-	-	-
Ethylbenzene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<			<	<	<	<	<	<	-	10	-	-
Chloromethane	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<			<	<	<	<	<	<			-	-
Dichloromethane (DCM)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<			<	<	<	<	<	<	13900	10	-	15
2-Chlorotoluene	14	<	<	<	<		<	<	<	<	<	<	<	<	<	<	<	<	<					<	<	<	8	_	- 40	-	-
Chloroform Vinyl Chloride (VC)	- 14	-			-		-								-		<		-									-	12	0.5	0.37
TICs	_	_			_	_	_			_	_	_							,				`			_	_	-	-	0.5	0.37
Tetrahydrofuran (THF)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<			<	<	<	<	<	<	9310		-	115
Acetone	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<			<	<	<	<	<	<	1000000	-	-	-
Dimethyl sulfide	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<			<	<	<	<	<	<	- 7,0000	-	-	-
Cyclic octaatomic sulfur	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<			<	<	<	<	<	<	-	-	-	-
Methyl Isobutyl Ketone	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<			<	<	<	<	<	<	-	-	-	-
Silanol, trimethyl-	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<			<	<	<	<	<	<	-			
2-Pentanol, 4-methyl-	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<			<	<	<	<	<	<	-	-	-	-
SVOCs (μg/l)																															
2-Methylphenol	<	<		<	<																							-		-	-
4-Methylphenol	<	<		<	<																							-	-	-	
Phenol	<	<		<	<		Ų.				<																	20600	0.5	-	
Phenols (mg/l)																															
Catechol			<	<	<	<	<	<	<	<	<	<	<	<	0.38	<	<	<	<			<	<	<	<		<				
Phenol			<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<			<	<	<	<		1.01	20.6	0.0005	-	-
m/p-cresol			<	<	<	<	<	<	<	<	<	0.11	<	<	<	<	<	<	<			<	<	<	<		1.37	-		-	-
o-cresol			<	<	<	<	<	<	<	<	<	0.14	<	<	<	<	<	<	<			<	<	<	<		<	-	-	-	-
Total cresols *			<	<	<	<	<	<	<	<	<	0.25	<	<	<	<	<	<	<			<	<	<	<		1.37	-	-	-	-
Total Speciated Phenols HPLC			<	<	<	<	<	<	<	<	<	0.30	<	<	0.40	<	<	<	<			<	<	<	<		2.4	-	-	-	-
Alcohols (μg/l)																															
Methyl Alcohol (Methanol)	1,260,025	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1000000			
Ethyl Alcohol (Ethanol)	1784	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	631	544	1000000		-	-
Isopropyl Alcohol	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	453	<	1000000	-	-	-
n-Propyl Alcohol	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-	-
Tetrahydrofuran (THF)			<	<	<	<	<	<	<	<	<	<	14	<	<	<	<	<	<	<	<	<	<	<	<	<	<	9310	-	-	11
Field Water Quality Readings																															
pH	-		7.45	7.92	6.71	6.1	6.75	7.39	6.4	6.33	6.12	7.0	6.8	7.6	7.8	7.5	8.0	5.0	8.2	8.0	8.1	9.0	7.5	7.2	7.2	-	-	-	≥6.5-9.5≤	≥6.5-9.5≤	
Temp (°C)			19	17.4	-	-	8.8		9.7	10.7	13.3	14.7	14.1	17.6	17.4	14.5		11.2	22	18.5	21.4	16	9.8	9.3	15.7	-	-	-	25	-	-
EC (µS/cm)		31633	45360	37568	49446	40123	36714	43286	37505	37312	28726	22896	42561	24867	24314	23512	19731	42585	31075	30056	41029	37641	25078	19975	37712		-	-	1000	2500	800-18
DO (%/mg/l)		7.34		-	-	-	11.72		6.74	8.5	7.14	8.51	8.38	6.05	7.08	6.77		6.48	8.56	9.85	8.33	6.2	10.54	8.29	5.5		-	-		-	-
Redox (mV)		45	91.4	57.9	-	-	-40	-	39.7	1.1	99.1	262.5	286.4	16.7	103	-30	-	199	84.1	79	192	237.9	219.1	20.7	110.9	-	-	-		-	-
	Von		Clear,			Close																									
	Very	Clear		Cl	Cl	Clear,	Clear,	Clear,	Clear,	Clear,	Clear,	Clear,	Clear,	Clear,	Clear,	Clear,	Clear,	Clear,	Clear	Class	Class	Clear	Cl	Class	Clear,	Light	Light				
Observations	Strong	water, no	moderate			moderate	brackish	brackish,	brackish,	brackish,	brackish,	brackish,	brackish,	brackish,	brackish,	brackish,	brackish,	brackish,		Clear	Clear		Clear, no	Clear,		brown	brown	N/A	N/A	N/A	N/
	organic	odour	organic odour	odour	odour	organic odour	odour	no odour	no odour	no odour	no odour	no odour	no odour	no odour	no odour	no odour	no odour	no odour	brackish	brackish	brackish	brackish	odour	brackish	brackish	colour	colour				
	odour, silty		ouour			odour																									
nd																															
EPA Interim Guideline Value							RTC - Remed	fial Target Co	ncentations																						
Groundwater EPA Threshold Scree	ning Value or	Drinking Wa	iter Parameti	ric Value						nev exceeded	the RTC																				
							Results are i																								

											r Results (ug/	1)												
		BH/N	MW301		T	BH/N	1W304		l I	BH/N	1W305		l	AG	W19		l I	AG	W20		RTC	IGV	TSV	Gw Re
VOC (μg/l)	12/07/18	04/12/18	13/03/19	11/06/19	12/07/18	04/12/18	13/03/19	11/06/19	12/07/18	04/12/18	13/03/19	11/06/19	14/08/18	04/12/18	13/03/19	11/06/19	14/08/18	04/12/18	13/03/19	11/06/19				
Methyl Tertiary Butyl Ether (MTBE)	<	<	<	<	1.7	<	<	<	0.2	<	<	<	6.7	4.6	4.1	15.6	18.1	13.4	8	5.1	-	30	-	10
Benzene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.5	<	0,6	<	<	-	1.0	1.0	0.75
Toluene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	16,600	10	-	525
Xylenes (meta & para)	<	<	<	<	<	<	<	<	<	<	<	<	3	12	2	<	13	<	<	<	-	10	-	-
O-Xylene	<	<	<	<	<	<	<	<	<	<	<	<	<	3	<	<	7	<	<	<	-	-	-	-
Ethylbenzene	3	3	2	3	<	<	<	<	<	<	<	<	<	3	2	<	7	<	<	<	-	10	-	-
Isopropylbenzene	<	<	<	<	12	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-		-	_
Dichloromethane (DCM)	<	<	<	<	<	13	<	<	<	<	<	<	<	<	<	<	<	<	<	<	13,900	10	-	15
2-Chlorotoluene	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		-	-	-
TICs (µg/I)																								
Tetrahydrofuran (THF)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	9,310	-	-	115
Acetone	<u> </u>	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	~	1,000,000	-	-	113
Dimethyl sulfide	_ <	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-		-	1
Cyclic octaatomic sulfur	-	<	<	_	<		-	<	-	-	<	<	_	<	<	<	-	<	-	-			-	1
Benzene, pentafluoro-	_ <	<	<		<	<	<	<	<	<	<	<	_	<	<	<	_	<	<	<	-	-	-	-
SVOCs (µg/l)					_							_	_	_	_		_		_					
2-Methylphenol																					-	-	-	-
4-Methylphenol																						-	-	-
Phenol																					20,600			_
Phenois (mg/l)																					20,600	0.5	-	-
						0.00		0.00													20.6	0.0005		
Phenol m/p-cresol	<	<	<	<		0.03	<	0.02	<	<	<	<		<	<	<		<	<	<	20.6	0.0005	-	-
	<	<	<	<			<		<	<	<	<		<	<	<		<	<	<		-	-	-
o-cresol	<	<	<	<		< 0.27	<	< .	<	<	<	<		<	<	<		<	<	<	-	-	-	
Total cresols #	<	<	<	<		0.37	<	0.11	<	<	<	<		<	<	<		<	<	<		-	-	-
Catechol	<	0.07	<	<		<	<	<	<	<	<	<		<	<	<		<	<	<	-	-	-	-
Total Speciated Phenols HPLC	<	<	<	<		0.4	<	0.1	<	<	<	<		<	<	<		<	<	<	-	-	-	-
Alcohols (μg/l)																					4 000 000			
Methyl Alcohol (Methanol)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1,000,000	-	-	-
Ethyl Alcohol (Ethanol)	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1,000,000	-	-	-
Isopropyl Alcohol	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1,000,000	-	-	-
n-Propyl Alcohol	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<		-	-	-
Tetrahydrofuran (THF)	3	2	1	2	<	<	2	<	1	<	<	<	14	650	12	<	4	<	2	12	9,310	-	-	115
Field Water Quality Readings																								
pH	8.28	8.95	8.73	8.88	6.72	6.72	6.99	6.82	6.91	7.11	6.59	6.95	6.87	7.11	6.97	6.85	6.84	7.31	6.98	6.95	-	≥6.5-9.5≤		_
Temp (°C)	-	14.2	12.2	15.4	-	-	12.3	14.7	-	11.8	10.7	14.9	-	13.8	10.4	17.1	-	13.9	12.3	16.7	-	25	-	-
EC (μS/cm)	1360	1039	647	946	2065	1886	864	1594	14680	18462	7605	17201	-	6963	4141	10228	-	5494	6447	6387	-	1000	2500	800-18
DO (%/mg/l)	-	7.44	3.81	-	-	-	1.96	-	-	6.22	6.37	-	-	3.26	2.18	2.3	-	1.92	2.2	5.36	-	-	-	-
Redox (mV)	-	30.4	76.7	-	-	-	-24	-	-	22.2	13.4	-	-	-73.9	45.1	-10.4	-	-98.5	-42.1	2.2	-	-	-	-
Observations	Greyish brown, organic odour	Green-grey tint,organic odour			Greyish- brown, moderate organic/che mical and solvent odour	Darkgrey tint, foul odour	tint, mild	Black, very silty, slight solvent/fou I odour		Dark grey tint, mild organic/che mical and solvent odour	Dark grey tint, mild organic/che mical odour	Dark grey tint, slightly silty, no odour	Clear, brackish/or ganic odour	Clear, moderate organic/che mical odour	organic/che		brackish/or	organic/che		Clear, mild organic/che mical odour	N/A	N/A	N/A	N/A

IGV = EPA Interim Guideline Value
TSV = Groundwater EPA Threshold Screening Value or Drinking Water Parametric Value
Results are in **bold** where they exceed the EPA IGV

RTC - Remedial Target Concentations
Results are marked in brown where they exceeded the RTC

Results are italics where they exceed the TSV or Gw Regs SI 366 of 2016

Table 18: Groundwater Levels to Datum - 11th June 2019

Well ID	Easting (ITM)	Northing (ITM)	Datum Malin	Groundwater Level mbtoc (11th June 19)	Groundwater Level (mOD)
AGW1a	578109	562768	8.80	7.01	1.79
AGW2	578112	562890	7.03	6.59	0.44
AGW3	578195	562962	4.48	4.16	0.32
AGW4	578293	563006	3.35	3.17	0.18
AGW5	578320	562879	8.19	7.8	0.39
AGW6	578263	562719	8.87	8.02	0.85
AGW7	578173	562905	8.00		Dry
AGW8	578367	562702	9.41	8.83	0.58
AGW9	578194	562586	6.55	5.8	0.75
AGW10	578041	562696	7.65	7.14	0.51
AGW11a	578214	562921	6.64	6.35	0.29
AGW12	578287	562885	7.92	7.15	0.77
AGW13	578225	562826	8.61	7.32	1.29
AGW14	578224	562895	7.70	7.00	0.70
AGW16	578235	562849	7.85	7.19	0.67
AGW17	578160	562896	7.74	7.47	0.27
AGW18	577943	562746	4.29	3.98	0.31
AGW19	-	-	5.57	5.36	0.21
AGW20	-	-	3.91	3.95	-0.04
MW204	578219	562863	7.78	6.46	1.32
MW208	578224	562863	8.03		Dry
MW210	578210	562865	8.14		Dry
MW215	578223	562873	7.88		Dry
MW217	578216	562854	8.12		Dry
MW227	578235	562874	7.83	6.92	0.91
MW228	578233	562836	8.06	7.24	0.82
MW230	578217	562871	7.91		Dry
MW301	-	-	7.60	1.64	5.96
MW304	-		5.76	5.43	0.33
MW305	-		3.78	2.93	0.85
SEEP1	578329	563052	-0.16		-0.16

Notes:

mOD = metres above Ordnance Datum (Malin Head)

mbtoc = metres below top of casing

Well pumping at time of measurement

APPENDIX A MONITORING SAMPLING LOGS

Quarterly Monitoring Report Verdé Ref: 51823

GROUNDWATER SITE LOG SHEET

5	Client:	GSK	Job Ref:	51823
	Date:	11-Jun-19	Log by:	JOS/DMC/JC
	Site:	Currabinny	Weather:	

Sample ID	рН	Temp (°C)	EC (μS/cm)	DO, mg/l	ORP, mV	Water Level, mBTOC	Well Depth, mBTOC	Purge Vol (L)	Recharge Notes	Sampling date	BH dia.	Odour	Visual Notes
AGW1a	Lab	14.9	562	-	-	7.01	8.42	8	Good	11/06/2019	50mm	Mild organic	Brown/red, very cloudy, some black suspended solids
AGW2	Lab	15.3	1462	-	-	6.59	8.58	12	Good	11/06/2019	50mm	Moderate organic/chemical	Grey tint, cloudy with black and brown suspended solids
AGW3	6.52	15.4	8209	6.53	94.4	4.16	14.95	65	Good	11/06/2019	50mm	None	Clear, slight fizz
AGW4	6.79	13.9	19935	7.48	181.3	3.17	7.44	26	Good	11/06/2019	50mm	Brackish	Clear water
AGW5	7.28	17.0	1993	2.04	-44.3	7.80	11	19	Pumping	11/06/2019	150mm	Moderate organic/chemical	Clear water
AGW6	8.10	14.7	572	6.42	-16.7	8.02	11.05	18	Poor, dry at 10L	11/06/2019	50mm	Very slight organic	Brown, cloudy, slightly silty
AGW8	Lab	14.7	803	-	-	8.83	15.9	42	Poor, dry at 20L	11/06/2019	50mm	None	Clear water
AGW9	Lab	16.0	1324	-	-	5.80	9.3	21	Good	11/06/2019	50mm	None	Slight grey tint, slightly cloudy
AGW10	Lab	15.7	1063	-	-	7.14	8.03	5	Moderae	11/06/2019	50mm	None	Light brown tint
AGW11a	6.85	19.2	4330	4.86	40.0	6.35	12.9	39	Good	11/06/2019	50mm	None	Orange/brown, silty
AGW12	7.21	13.2	1494	3.92	26.4	7.15	8.94	11	Moderae	11/06/2019	50mm	Moderate organic/chemical	Grey tint
AGW13	Lab	17.3	1139	-	-	7.32	13.6	38	Good	11/06/2019	50mm	Moderate organic/chemical	Dark grey tint with some black suspended soilds
AGW14 #	7.09	19.7	2668	3.01	-0.2	7.00	18.3	68	Pump turned on	11/06/2019	150mm	Moderate organic/chemical	Clear, slight fizz
# - Duplicate	4-1 A	000/44 ^	N/04 (45.4	DOL)									

= Duplicate taken on AGW 14 - AGW21 (15.4mBGL)

								GRO	UNDWA	TER SIT	E LOG	SHEET	
Ve	PIC	lé	Client:	GSK					Job Ref:				51823
			Date:	11-Jun-19					Log by:				JOS/DMC/JC
			Site:	Currabinny	/		_		Weather:				
Sample ID	рН	Temp (°C)	EC (μS/cm)	DO, mg/l	ORP, mV	Water Level, mBTOC	Well Depth, mBTOC	Purge Vol (L)	Recharge Notes	Sampling date	BH dia.	Odour	Visual Notes
AGW16	7.49	19.4	1556	2.45	61.7	7.185	24.5	104	Pumping	11/06/2019	150mm	Moderate organic/chemical	Clear, slight fizz
AGW17	7.21	15.6	2512	2.3	-43.7	7.47	18.4	66	Pump turned on	11/06/2019	150mm	Mild organic/chemical	Clear water
AGW18	Lab	13.5	1932	-	-	3.98	6.98	18	Good	11/06/2019	50mm	Strong organic	Clear water, very slight brown tint
AGW19	6.85	17.1	10228	2.3	-10.4	5.36	9.1	22	Pumping	11/06/2019	150mm	Slight organic/chemical	Clear water
AGW20	6.95	16.7	6387	5.36	2.2	3.95	8.88	30	Pumping	11/06/2019	150mm	Mild organic/chemical	Clear water
MW204	Lab	13.9	778	-	-	6.46	8.3	11	Good	11/06/2019	50mm	Strong solvent	Brown tint, cloudy, very slightly silty
MW227	Lab	14.5	1359	-	-	6.92	9.76	17	Moderate	11/06/2019	50mm	Slight organic/chemical	Brown tint, silty
MW228	Lab	15	963	-	-	7.24	8.15	5	Good	11/06/2019	50mm	None	Orange/brow tint, slightly silty
СР	7.15	15.7	37712	5.5	110.9	-	-	1	-	11/06/2019	50mm	Brackish	Clear water
MW301	Lab	15.4	946	-	-	1.64	3.04	8	Good	11/06/2019	50mm	Slight organic/chemical	Clear, very slightly cloudy
MW304	Lab	14.7	1594	-	-	5.43	5.63	1	Moderate	11/06/2019	50mm	Slight solvent/foul	Black, very silty
MW305	Lab	14.9	>4000	-	-	2.93	3.21	2	Moderate	11/06/2019	50mm	None	Dark grey tint, slightly silty

APPENDIX B

LABORATORY CERTIFICATES

For

Quarter 2 - 11th June 2019

Additional AGW5 – 21ST June 2019

Additional AGW5 – 10th July 2019

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

Verde Environmental Consultants Unit 3 Airport E.Business & Technology Park Farmers Cross Cork

Attention: Donal Hogan

Date: 18th June, 2019

Your reference : 51823

Our reference : Test Report 19/9561 Batch 1

Location:

Date samples received: 13th June, 2019

Status: Final report

Issue:

Twenty six samples were received for analysis on 13th June, 2019 of which twenty six were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Bruce Leslie

Project Manager

Please include all sections of this report if it is reproduced $\label{eq:please} % \[\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}$

Client Name: Verde Environmental Consultants

19/9561

Reference: 51823

Location:

EMT Job No:

Contact: Donal Hogan

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

Report : Liquid

Control Cont	EMT Job No:	19/9561						$H=H_2SO_4, I$	Z=ZnAc, N=	NaOH, HN=	⊧HN0 ₃			
Part Part	EMT Sample No.	1-6	7-12	13-18	19-24	25-30	31-36	37-42	43-48	49-54	55-60			
COCK Not / misses Cock Not / misses misses Cock Not / misses Cock Not / misses Cock Not / miss	Sample ID	AGW1a	AGW2	AGW3	AGW4	AGW5	AGW6	AGW8	AGW9	AGW10	AGW11			
Coctainers	Depth	8.42	8.58	14.95	7.44	11.00	11.05	15.90	9.30	8.03	12.90	Please se	e attached n	otes for all
Sample Type	COC No / misc													
Batch Number 1	Containers	VHG	VHG	VHG	VHG									
Batch Number 1	Sample Date	11/06/2019	11/06/2019	11/06/2019	11/06/2019	11/06/2019	11/06/2019	11/06/2019	11/06/2019	11/06/2019	11/06/2019			
Date of Receipt 306/2019 30	Sample Type	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water			
No. No.	Batch Number	1	1	1	1	1	1	1	1	1	1			Method
Resortion -0.01 -0	Date of Receipt	13/06/2019	13/06/2019	13/06/2019	13/06/2019	13/06/2019	13/06/2019	13/06/2019	13/06/2019	13/06/2019	13/06/2019	LOD/LOR	Units	
Calechol	VOC TICs	ND	ND	ND	ND		None	TM15/PM10						
Calechol														
Pennol*													-	
mip-cresol														
Corposol Corposol													-	
Total cresols \$\frac{4}{2}\cdot \cdot •												-		
1-naphthol													-	
2.3.5-trimethyl phenol	Xylenols #	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	mg/l	TM26/PM0
2-isopropylphenol	1-naphthol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/l	TM26/PM0
Total Speciated Phenois HPLC	2,3,5-trimethyl phenol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/l	TM26/PM0
Alcohols/Acetates Methyl Alcohol (Methanol) Sou Sou Sou Sou Sou Sou Sou Sou Sou Sou	2-isopropylphenol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/l	TM26/PM0
Methyl Alcohol (Methanol) <500	Total Speciated Phenols HPLC	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/l	TM26/PM0
Methyl Alcohol (Methanol) <500	Alcohols/Acetates													
FPropyl Alcohol (Isopropanol) <100		<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	ug/l	TM83/PM10
n-Propyl Alcohol	Ethyl Alcohol (Ethanol)	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	ug/l	TM83/PM10
n-Butyl Alcohol	i-Propyl Alcohol (Isopropanol)	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	ug/l	TM83/PM10
n-Pentyl Alcohol	n-Propyl Alcohol	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	ug/l	TM83/PM10
n-Hexyl Alcohol	n-Butyl Alcohol	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	ug/l	TM83/PM10
n-Heptyl Alcohol 100	n-Pentyl Alcohol	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	ug/l	TM83/PM10
Methyl Acetate <100	n-Hexyl Alcohol	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	ug/l	TM83/PM10
Ethyl Acetate													-	
i-Propyl Acetate													-	
n-Propyl Acetate													-	
n-Butyl Acetate													-	
Tetrahydrofuran < 1 <1 2 2 1271** <1 <1 <1 6 <1 <1 ug/l TM83/PM10 Ammoniacal Nitrogen as NH4 0.05 4.78 17.92 18.48 7.69 <0.03 0.04 2.93 4.09 24.46 <0.03 mg/l TM38/PM0 Electrical Conductivity @25C <2 uS/cm TM76/PM0													-	
Ammoniacal Nitrogen as NH4														
Electrical Conductivity @ 25C # <2 uS/cm TM76/PM0	Totallyarolalari	71			_	1271	~ ;	~!		- U	~ 1	, ·	ugn	TWOO/T WITO
	Ammoniacal Nitrogen as NH4#	0.05	4.78	17.92	18.48	7.69	<0.03	0.04	2.93	4.09	24.46	<0.03	mg/l	TM38/PM0
PH*	,	-		-	-	-	-	-	-	-	-			
	pH#	7.50	7.00	-	-	-	-	8.13	8.11	7.65	-	<0.01	pH units	TM73/PM0

Client Name: Verde Environmental Consultants

19/9561

Reference: 51823

Location:

EMT Job No:

Contact: Donal Hogan

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

Report : Liquid

EMT Job No:	19/9561 H=H ₂ SO ₄ , Z=ZnAc, N=NaOH, HN=HNO ₃												
EMT Sample No.	61-66	67-72	73-78	79-84	85-90	91-96	97-102	103-108	109-114	115-120			
Sample ID	AGW12	AGW13	AGW14	AGW16	AGW17	AGW18	AGW19	AGW20	AGW21	MW204			
Depth	8.94	13.60	18.30	24.50	18.40	6.98	9.10	8.88	15.40	8.30	Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	VHG	VHG	VHG	VHG	VHG	VHG	VHG	VHG	VHG	VHG			
Sample Date	11/06/2019	11/06/2019	11/06/2019	11/06/2019	11/06/2019	11/06/2019	11/06/2019	11/06/2019	11/06/2019	11/06/2019			
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water			
Batch Number	1	1	1	1	1	1	1	1	1	1			Method
Date of Receipt	13/06/2019	13/06/2019	13/06/2019	13/06/2019	13/06/2019	13/06/2019	13/06/2019	13/06/2019	13/06/2019	13/06/2019	LOD/LOR	Units	No.
VOC TICs	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		None	TM15/PM10
Resorcinol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/l	TM26/PM0
Catechol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/l	TM26/PM0
Phenol # m/p-cresol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	<0.01	mg/l	TM26/PM0
m/p-cresol o-cresol	<0.02 <0.01	<0.02 <0.01	<0.02 <0.01	<0.02 <0.01	<0.02 <0.01	<0.02	<0.02 <0.01	<0.02 <0.01	<0.02	1.04 6.68 _{AA}	<0.02 <0.01	mg/l mg/l	TM26/PM0 TM26/PM0
Total cresols #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	7.72	<0.03	mg/l	TM26/PM0
Xylenols#	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	mg/l	TM26/PM0
1-naphthol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/l	TM26/PM0
2,3,5-trimethyl phenol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/l	TM26/PM0
2-isopropylphenol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/l	TM26/PM0
Total Speciated Phenols HPLC	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	7.7	<0.1	mg/l	TM26/PM0
Aleehele /A estate													
Alcohols/Acetates Methyl Alcohol (Methanol)	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	ug/l	TM83/PM10
Ethyl Alcohol (Ethanol)	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	ug/l	TM83/PM10
i-Propyl Alcohol (Isopropanol)	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	ug/l	TM83/PM10
n-Propyl Alcohol	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	ug/l	TM83/PM10
n-Butyl Alcohol	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	ug/l	TM83/PM10
n-Pentyl Alcohol	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	ug/l	TM83/PM10
n-Hexyl Alcohol	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	ug/l	TM83/PM10
n-Heptyl Alcohol	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	ug/l	TM83/PM10
Methyl Acetate	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	ug/l	TM83/PM10
Ethyl Acetate i-Propyl Acetate	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	ug/l ug/l	TM83/PM10 TM83/PM10
n-Propyl Acetate	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	ug/l	TM83/PM10
n-Butyl Acetate	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	ug/l	TM83/PM10
Tetrahydrofuran	<1	<1	<1	617	<1	<1	<1	12	<1	166	<1	ug/l	TM83/PM10
Ammoniacal Nitrogen as NH4#	22.44	6.75	21.25	16.66	26.13	4.98	51.64	26.21	20.96	5.25	<0.03	mg/l	TM38/PM0
Electrical Conductivity @25C#	-	-	-	-	-	-	-	-	-	-	<2	uS/cm	TM76/PM0
pH #	-	7.59	-	-	-	7.40	-	-	-	7.24	<0.01	pH units	TM73/PM0

19/9561

Client Name: Verde Environmental Consultants

Reference: 51823

Location:

EMT Job No:

Contact: Donal Hogan

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

Report : Liquid

EMT Sample No.	121-126	127-132	133-138	139-144	145-150	151-156								
Sample ID	MW227	MW228	MW301	MW304	MW305	СР								
Depth	9.76	8.15	3.04	5.63	3.21						Division			
COC No / misc												e attached n ations and a		
	\/.I.O	VIII 0	\/.I.O	VIII 0	VIII 0	VIII 0								
Containers	VHG	VHG	VHG	VHG	VHG	VHG								
Sample Date	11/06/2019			11/06/2019	11/06/2019	11/06/2019								
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Surface Water								
Batch Number	1	1	1	1	1	1					LOD/LOR	Units	Method	
Date of Receipt	13/06/2019	13/06/2019	13/06/2019	13/06/2019	13/06/2019	13/06/2019					202/2011	01.11.0	No.	
VOC TICs	ND	ND	ND	ND	ND	ND						None	TM15/PM10	
Resorcinol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01					<0.01	mg/l	TM26/PM0	
Catechol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01					<0.01	mg/l	TM26/PM0	
Phenol # m/p-cresol	<0.01	<0.01 <0.02	<0.01	0.02	<0.01 <0.02	<0.01					<0.01	mg/l	TM26/PM0 TM26/PM0	
o-cresol	<0.02	<0.02	<0.02	<0.01	<0.02	<0.02					<0.02	mg/l mg/l	TM26/PM0	
Total cresols #	<0.03	<0.03	<0.03	0.11	<0.03	<0.03					<0.03	mg/l	TM26/PM0	
Xylenols #	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06					<0.06	mg/l	TM26/PM0	
1-naphthol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01					<0.01	mg/l	TM26/PM0	
2,3,5-trimethyl phenol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01					<0.01	mg/l	TM26/PM0	
2-isopropylphenol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01					<0.01	mg/l	TM26/PM0	
Total Speciated Phenols HPLC	<0.1	<0.1	<0.1	0.1	<0.1	<0.1					<0.1	mg/l	TM26/PM0	
Alcohols/Acetates														
Methyl Alcohol (Methanol)	<500	<500	<500	<500	<500	<500					<500	ug/l	TM83/PM10	
Ethyl Alcohol (Ethanol)	<500	<500	<500	<500	<500	<500					<500	ug/l	TM83/PM10	
i-Propyl Alcohol (Isopropanol)	<100	<100	<100	<100	<100	<100					<100	ug/l	TM83/PM10	
n-Propyl Alcohol	<100	<100	<100	<100	<100	<100					<100	ug/l	TM83/PM10	
n-Butyl Alcohol	<100	<100	<100	<100	<100	<100					<100	ug/l	TM83/PM10	
n-Pentyl Alcohol	<100	<100	<100	<100	<100	<100					<100	ug/l	TM83/PM10	
n-Hexyl Alcohol	<100	<100	<100	<100	<100	<100					<100	ug/l	TM83/PM10	
n-Heptyl Alcohol	<100	<100	<100	<100	<100	<100					<100	ug/l	TM83/PM10	
Methyl Acetate	<100	<100	<100	<100	<100	<100					<100	ug/l	TM83/PM10	
Ethyl Acetate	<100	<100	<100	<100	<100	<100					<100	ug/l	TM83/PM10	
i-Propyl Acetate	<100	<100	<100	<100	<100	<100					<100	ug/l	TM83/PM10	
n-Propyl Acetate	<100	<100	<100	<100	<100	<100					<100	ug/l	TM83/PM10	
n-Butyl Acetate	<100	<100	<100	<100	<100	<100					<100	ug/l	TM83/PM10	
Tetrahydrofuran	<1	<1	2	<1	<1	<1					<1	ug/l	TM83/PM10	
Ammoniacal Nitrogen as NH4#	1.82	5.85	9.48	9.11	4.12	0.73					<0.03	mg/l	TM38/PM0	
Electrical Conductivity @25C#	-	-	-	-	17201	-					<2	uS/cm	TM76/PM0	
pH#	7.14	7.33	8.88	6.82	6.95	-					<0.01	pH units	TM73/PM0	
Electrical Conductivity @25C#	-	-	-	-		17201	17201 -	17201 -	17201 -	17201 -	17201 -	17201 - <2	17201 - <2 uS/cm	

Client Name: Verde Environmental Consultants

Reference: 51823

Location:

Contact: Donal Hogan EMT Job No: 19/9561

VOC Report : Liquid

EMT Job No:	19/9561												
EMT Sample No.	1-6	7-12	13-18	19-24	25-30	31-36	37-42	43-48	49-54	55-60			
Sample ID	AGW1a	AGW2	AGW3	AGW4	AGW5	AGW6	AGW8	AGW9	AGW10	AGW11			
Depth COC No / misc	8.42	8.58	14.95	7.44	11.00	11.05	15.90	9.30	8.03	12.90		e attached r ations and a	
Containers	VHG	VHG	VHG	VHG	VHG	VHG	VHG	VHG	VHG	VHG			
Sample Date	11/06/2019	11/06/2019				11/06/2019	11/06/2019		11/06/2019	11/06/2019			
Sample Type Batch Number	Ground Water	Ground Water	Ground Water	Ground Water		Ground Water	Ground Water			Ground Water			
Date of Receipt	1 13/06/2019	13/06/2019		13/06/2019	1 13/06/2019	1 13/06/2019	13/06/2019	1 13/06/2019	1 13/06/2019	1 13/06/2019	LOD/LOR	Units	Method No.
VOC MS	10/00/2010	10/00/2010	10/00/2010	10/00/2010	10/00/2010	10/00/2010	10/00/2010	10/00/2010	10/00/2010	10/00/2010			
Dichlorodifluoromethane	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
Methyl Tertiary Butyl Ether #	<0.1	3.6	1.9	14.4	6.0	<0.1	<0.1	0.3	0.3	1.5	<0.1	ug/l	TM15/PM10
Chloromethane #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
Vinyl Chloride #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ug/l	TM15/PM10
Bromomethane Chloroethane #	<1 <3	<1 <3	<1 <3	<1 <3	<1 <3	<1 <3	<1 <3	<1 <3	<1 <3	<1 <3	<1 <3	ug/l ug/l	TM15/PM10 TM15/PM10
Trichlorofluoromethane #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
1,1-Dichloroethene (1,1 DCE) #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
Dichloromethane (DCM)#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/l	TM15/PM10
trans-1-2-Dichloroethene#	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
1,1-Dichloroethane#	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
cis-1-2-Dichloroethene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
2,2-Dichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/l	TM15/PM10 TM15/PM10
Bromochloromethane * Chloroform *	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	ug/l ug/l	TM15/PM10
1,1,1-Trichloroethane #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
1,1-Dichloropropene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
Carbon tetrachloride #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
1,2-Dichloroethane #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
Benzene #	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ug/l	TM15/PM10
Trichloroethene (TCE)#	<3 <2	<3 <2	<3 <2	<3 <2	<3 <2	<3 <2	<3 <2	<3 <2	<3 <2	<3 <2	<3 <2	ug/l ug/l	TM15/PM10 TM15/PM10
1,2-Dichloropropane * Dibromomethane *	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
Bromodichloromethane #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
cis-1-3-Dichloropropene	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
Toluene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/l	TM15/PM10
trans-1-3-Dichloropropene	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
1,1,2-Trichloroethane #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
Tetrachloroethene (PCE) # 1,3-Dichloropropane #	<3 <2	<3 <2	<3 <2	<3 <2	<3 <2	<3 <2	<3 <2	<3 <2	<3 <2	<3 <2	<3 <2	ug/l ug/l	TM15/PM10 TM15/PM10
Dibromochloromethane #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
1,2-Dibromoethane #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
Chlorobenzene #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
1,1,1,2-Tetrachloroethane #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
Ethylbenzene #	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/l	TM15/PM10
m/p-Xylene # o-Xylene #	<2 <1	<2 <1	<2 <1	<2 <1	<2 <1	<2 <1	<2 <1	<2 <1	<2 <1	<2 <1	<2 <1	ug/l ug/l	TM15/PM10 TM15/PM10
Styrene	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
Bromoform #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
Isopropylbenzene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
1,1,2,2-Tetrachloroethane	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/l	TM15/PM10
Bromobenzene#	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
1,2,3-Trichloropropane * Propylbenzene *	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	ug/l ug/l	TM15/PM10 TM15/PM10
2-Chlorotoluene #	<3	<3	<3	<3	5	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
1,3,5-Trimethylbenzene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
4-Chlorotoluene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
tert-Butylbenzene#	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
1,2,4-Trimethylbenzene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
sec-Butylbenzene#	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
4-Isopropyltoluene * 1,3-Dichlorobenzene *	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	ug/l ug/l	TM15/PM10 TM15/PM10
1,4-Dichlorobenzene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
n-Butylbenzene#	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
1,2-Dichlorobenzene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
1,2-Dibromo-3-chloropropane	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
1,2,4-Trichlorobenzene	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
Hexachlorobutadiene	<3 <2	<3 <2	<3	<3 <2	<3 <2	<3	<3 <2	<3 <2	<3 <2	<3	<3 <2	ug/l	TM15/PM10 TM15/PM10
Naphthalene 1,2,3-Trichlorobenzene	<2 <3	<2 <3	<2 <3	<2 <3	<2 <3	<2 <3	<2 <3	<2 <3	<2 <3	<2 <3	<2 <3	ug/l ug/l	TM15/PM10
Surrogate Recovery Toluene D8	102	102	100	102	97	101	100	102	101	109	<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	103	102	100	102	99	102	101	103	104	104	<0	%	TM15/PM10

Client Name: Verde Environmental Consultants

Reference: 51823

Location:

Contact: Donal Hogan EMT Job No: 19/9561

VOC Report : Liquid

EMT Job No:	19/9561												
EMT Sample No.	61-66	67-72	73-78	79-84	85-90	91-96	97-102	103-108	109-114	115-120			
Sample ID	AGW12	AGW13	AGW14	AGW16	AGW17	AGW18	AGW19	AGW20	AGW21	MW204			
Depth	8.94	13.60	18.30	24.50	18.40	6.98	9.10	8.88	15.40	8.30		e attached n	
COC No / misc											abbrevia	ations and a	cronyms
Containers Sample Date	V H G 11/06/2019	V H G 11/06/2019	V H G 11/06/2019	V H G 11/06/2019	V H G 11/06/2019	V H G 11/06/2019	V H G 11/06/2019	V H G 11/06/2019	V H G 11/06/2019	V H G 11/06/2019			
•	Ground Water		Ground Water	Ground Water									
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	13/06/2019	13/06/2019	13/06/2019	13/06/2019	13/06/2019	13/06/2019	13/06/2019	13/06/2019	13/06/2019	13/06/2019	LOD/LOR	Office	No.
VOC MS Dichlorodifluoromethane	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
Methyl Tertiary Butyl Ether #	4.5	1.0	2.9	1.4	11.7	2.2	15.6	5.1	2.8	<0.1	<0.1	ug/l ug/l	TM15/PM10
Chloromethane #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
Vinyl Chloride #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	ug/l	TM15/PM10
Bromomethane #	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/l	TM15/PM10
Chloroethane # Trichlorofluoromethane #	<3 <3	<3 <3	ug/l ug/l	TM15/PM10 TM15/PM10									
1,1-Dichloroethene (1,1 DCE)#	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
Dichloromethane (DCM)#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/l	TM15/PM10
trans-1-2-Dichloroethene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
1,1-Dichloroethane#	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
cis-1-2-Dichloroethene # 2,2-Dichloropropane	<3 <1	<3 <1	ug/l ug/l	TM15/PM10 TM15/PM10									
Bromochloromethane #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
Chloroform#	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
1,1,1-Trichloroethane #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
1,1-Dichloropropene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
Carbon tetrachloride # 1,2-Dichloroethane #	<2 <2	<2 2	<2 <2	ug/l ug/l	TM15/PM10 TM15/PM10								
Benzene#	<0.5	<0.5	2.3	<0.5	<0.5	<0.5	0.5	<0.5	2.6	15.2	<0.5	ug/l	TM15/PM10
Trichloroethene (TCE)#	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
1,2-Dichloropropane #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
Dibromomethane #	<3 <2	<3	<3	<3 <2	<3	<3 <2	<3 <2	<3	<3 <2	<3 <2	<3 <2	ug/l	TM15/PM10 TM15/PM10
Bromodichloromethane ** cis-1-3-Dichloropropene	<2	<2 <2	<2 <2	<2	<2 <2	<2	<2	<2 <2	<2	<2	<2	ug/l ug/l	TM15/PM10
Toluene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	24407**	<5	ug/l	TM15/PM10
trans-1-3-Dichloropropene	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
1,1,2-Trichloroethane #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
Tetrachloroethene (PCE) # 1,3-Dichloropropane #	<3 <2	<3 <2	ug/l ug/l	TM15/PM10 TM15/PM10									
Dibromochloromethane #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
1,2-Dibromoethane #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
Chlorobenzene #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
1,1,1,2-Tetrachloroethane #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
Ethylbenzene [#] m/p-Xylene [#]	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2	4 19	<1 <2	ug/l ug/l	TM15/PM10 TM15/PM10
o-Xylene #	<1	<1	<1	1	<1	<1	<1	<1	<1	3	<1	ug/l	TM15/PM10
Styrene	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
Bromoform#	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
Isopropylbenzene#	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
1,1,2,2-Tetrachloroethane Bromobenzene #	<4 <2	<4 <2	ug/l ug/l	TM15/PM10 TM15/PM10									
1,2,3-Trichloropropane #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
Propylbenzene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
2-Chlorotoluene #	10	<3	<3	5	<3	<3	<3	<3	3	<3	<3	ug/l	TM15/PM10
1,3,5-Trimethylbenzene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
4-Chlorotoluene # ert-Butylbenzene #	<3 <3	<3 <3	ug/l	TM15/PM10 TM15/PM10									
1,2,4-Trimethylbenzene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l ug/l	TM15/PM10
sec-Butylbenzene#	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
4-Isopropyltoluene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
1,3-Dichlorobenzene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
1,4-Dichlorobenzene # n-Butylbenzene #	<3 <3	<3 <3	ug/l ug/l	TM15/PM10 TM15/PM10									
n-Butylbenzene 1,2-Dichlorobenzene #	<3 <3	<3 <3	<3	<3 <3	<3 <3	ug/l	TM15/PM10						
1,2-Dibromo-3-chloropropane	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
1,2,4-Trichlorobenzene	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
Hexachlorobutadiene	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
Naphthalene 1,2,3-Trichlorobenzene	<2 <3	<2 <3	ug/l ug/l	TM15/PM10 TM15/PM10									
1,2,3-ITICHIOTODENZENE		<.3	<3	<3	<3	<3	<3	<3	<3	<3	<3	uq/I	LIVITS/PIVITU
Surrogate Recovery Toluene D8	105	104	108	101	108	101	106	103	104	77	<0	%	TM15/PM10

Client Name: Verde Environmental Consultants

Reference: 51823

Location: Contact:

EMT Job No:

Donal Hogan 19/9561 VOC Report : Liquid

EINI JOD NO:	19/9561										
EMT Sample No.	121-126	127-132	133-138	139-144	145-150	151-156					
Sample ID	MW227	MW228	MW301	MW304	MW305	СР					
Depth	9.76	8.15	3.04	5.63	3.21				Please se	e attached r	notes for all
COC No / misc									abbrevia	ations and a	cronyms
Containers	V H G	V H G	V H G	V H G	V H G 11/06/2019	V H G 11/06/2019					
•	Ground Water	11/06/2019 Ground Water	11/06/2019 Ground Water	11/06/2019 Ground Water	Ground Water	Surface Water					
Batch Number	1	1	1	1	1	1			LOD/LOR	Llaita	Method
Date of Receipt	13/06/2019	13/06/2019	13/06/2019	13/06/2019	13/06/2019	13/06/2019			LOD/LOR	Units	No.
VOC MS											
Dichlorodifluoromethane	<2 <0.1	<2 0.9	<2 <0.1	<2 <0.1	<2 <0.1	<2 <0.1			<2 <0.1	ug/l	TM15/PM10 TM15/PM10
Methyl Tertiary Butyl Ether # Chloromethane #	<3	<3	<0.1	<0.1	<3	<0.1			<0.1	ug/l ug/l	TM15/PM10
Vinyl Chloride #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	ug/l	TM15/PM10
Bromomethane	<1	<1	<1	<1	<1	<1			<1	ug/l	TM15/PM10
Chloroethane #	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Trichlorofluoromethane #	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,1-Dichloroethene (1,1 DCE) # Dichloromethane (DCM) #	<3 <5	<3 <5	<3 <5	<3 <5	<3 <5	<3 <5			<3 <5	ug/l ug/l	TM15/PM10 TM15/PM10
rans-1-2-Dichloroethene #	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,1-Dichloroethane#	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
cis-1-2-Dichloroethene #	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
2,2-Dichloropropane	<1	<1	<1	<1	<1	<1			<1	ug/l	TM15/PM10
Bromochloromethane # Chloroform #	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2			<2 <2	ug/l	TM15/PM10 TM15/PM10
1,1,1-Trichloroethane#	<2	<2	<2	<2	<2	<2			<2	ug/l ug/l	TM15/PM10
1,1-Dichloropropene #	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Carbon tetrachloride #	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
1,2-Dichloroethane #	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Benzene #	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM15/PM10
Trichloroethene (TCE) # 1,2-Dichloropropane #	<3 <2	<3 <2	<3 <2	<3 <2	<3 <2	<3 <2			<3 <2	ug/l ug/l	TM15/PM10 TM15/PM10
Dibromomethane #	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Bromodichloromethane #	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
cis-1-3-Dichloropropene	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Toluene #	<5	<5	<5	<5	<5	<5			<5	ug/l	TM15/PM10
rans-1-3-Dichloropropene	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10 TM15/PM10
1,1,2-Trichloroethane # Tetrachloroethene (PCE) #	<2 <3	<2 <3	<2 <3	<2 <3	<2 <3	<2 <3			<2 <3	ug/l ug/l	TM15/PM10
1,3-Dichloropropane #	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Dibromochloromethane #	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
1,2-Dibromoethane #	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Chlorobenzene#	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
1,1,1,2-Tetrachloroethane # Ethylbenzene #	<2 <1	<2 <1	<2 3	<2 <1	<2 <1	<2 <1			<2 <1	ug/l ug/l	TM15/PM10 TM15/PM10
m/p-Xylene #	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
o-Xylene #	<1	<1	<1	<1	<1	<1			<1	ug/l	TM15/PM10
Styrene	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Bromoform#	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
sopropylbenzene # 1,1,2,2-Tetrachloroethane	<3 <4	<3 <4	<3 <4	<3 <4	<3 <4	<3 <4			<3 <4	ug/l ug/l	TM15/PM10 TM15/PM10
Bromobenzene #	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
1,2,3-Trichloropropane #	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Propylbenzene #	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
2-Chlorotoluene #	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,3,5-Trimethylbenzene # 4-Chlorotoluene #	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3			<3 <3	ug/l ug/l	TM15/PM10 TM15/PM10
ert-Butylbenzene #	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3			<3 <3	ug/l	TM15/PM10 TM15/PM10
1,2,4-Trimethylbenzene #	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
sec-Butylbenzene#	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
4-Isopropyltoluene #	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,3-Dichlorobenzene # 1,4-Dichlorobenzene #	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3			<3 <3	ug/l ug/l	TM15/PM10 TM15/PM10
n-Butylbenzene #	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3			<3 <3	ug/l	TM15/PM10
1,2-Dichlorobenzene #	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,2-Dibromo-3-chloropropane	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
1,2,4-Trichlorobenzene	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Hexachlorobutadiene	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Naphthalene 1,2,3-Trichlorobenzene	<2 <3	<2 <3	<2 <3	<2 <3	<2 <3	<2 <3			<2 <3	ug/l ug/l	TM15/PM10 TM15/PM10
1,2,0 111011010001120110			98	99	97	96			<0	wg/i	TM15/PM10
Surrogate Recovery Toluene D8	96	98	90	33	31	90				/0	

Client Name: Verde Environmental Consultants

Reference: 51823

Location:

Contact: Donal Hogan

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
					No deviating sample report results for job 19/9561	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No: 19/9561

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

ABBREVIATIONS and ACRONYMS USED

ISO17025 (UKAS Ref No. 4225) accredited - UK.
ISO17025 (SANAS Ref No.T0729) accredited - South Africa.
Indicates analyte found in associated method blank.
Dilution required.
MCERTS accredited.
Not applicable
No Asbestos Detected.
None Detected (usually refers to VOC and/SVOC TICs).
No Determination Possible
Calibrated against a single substance
Surrogate recovery outside performance criteria. This may be due to a matrix effect.
Results expressed on as received basis.
AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
Result outside calibration range, results should be considered as indicative only and are not accredited.
Analysis subcontracted to an Element Materials Technology approved laboratory.
Samples are dried at 35°C ±5°C
Suspected carry over
Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
Matrix Effect
No Fibres Detected
AQC Sample
Blank Sample
Client Sample
Trip Blank Sample
Outside Calibration Range
x20 Dilution

EMT Job No: 19/9561

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM15	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.				
TM15	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.				
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.	Yes			
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM0	No preparation is required.	Yes			
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM76	Modified US EPA method 120.1. Determination of Specific Conductance by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM83	Modified USEPA method 8260. Determination of Alcohols, Acetates, Acetone, Fuel Oxygenates, THF and Cyclohexane by Headspace GC-MS	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.				

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

Verde Environmental Consultants Unit 3 Airport E.Business & Technology Park Farmers Cross Cork

Attention : Donal Hogan

Date: 25th June, 2019

Your reference : 51823

Our reference: Test Report 19/10059 Batch 1

Location:

Date samples received: 21st June, 2019

Status: Final report

Issue:

One sample was received for analysis on 21st June, 2019 of which one was scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

is Hallewell.

Lucas Halliwell

Project Co-ordinator

Please include all sections of this report if it is reproduced

Verde Environmental Consultants Client Name:

51823 Reference:

Location:

Contact: Donal Hogan

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

Report : Liquid

Contact: EMT Job No:	Donal Hogan 19/10059							Liquids/products: V=40ml vial, G=glass bottle H=H ₂ SO ₄ , Z=ZnAc, N=NaOH, HN=HNO ₃				tle, P=plastic bottle			
EMT Sample No.	1-3														
Sample ID	AGW-5														
Depth											Please se	e attached n	otes for all		
COC No / misc												ations and a			
Containers	V														
Sample Date	19/06/2019														
Sample Type	Ground Water														
Batch Number	1									•			Method		
Date of Receipt	21/06/2019										LOD/LOR	Units	No.		
Alcohols/Acetates															
Methyl Alcohol (Methanol)	<500										<500	ug/l	TM83/PM10		
Ethyl Alcohol (Ethanol)	<500										<500	ug/l	TM83/PM10		
i-Propyl Alcohol (Isopropanol) n-Propyl Alcohol	<100 <100										<100 <100	ug/l ug/l	TM83/PM10 TM83/PM10		
n-Butyl Alcohol	<100										<100	ug/l	TM83/PM10		
n-Pentyl Alcohol	<100										<100	ug/l	TM83/PM10		
n-Hexyl Alcohol	<100										<100	ug/l	TM83/PM10		
n-Heptyl Alcohol	<100										<100	ug/l	TM83/PM10		
Methyl Acetate	<100										<100	ug/l	TM83/PM10		
Ethyl Acetate i-Propyl Acetate	<100 <100										<100 <100	ug/l ug/l	TM83/PM10 TM83/PM10		
n-Propyl Acetate	<100										<100	ug/l	TM83/PM10		
n-Butyl Acetate	<100										<100	ug/l	TM83/PM10		
Tetrahydrofuran	1006										<1	ug/l	TM83/PM10		

Client Name: Verde Environmental Consultants

Reference: 51823

Location:

Contact: Donal Hogan

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason							
	No deviating sample report results for job 19/10059												

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No: 19/10059

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range

EMT Job No: 19/10059

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM83	Modified USEPA method 8260. Determination of Alcohols, Acetates, Acetone, Fuel Oxygenates, THF and Cyclohexane by Headspace GC-MS	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.				

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

Verde Environmental Consultants Unit 3 Airport E.Business & Technology Park Farmers Cross Cork

Attention : Donal Hogan

Date: 12th July, 2019

Your reference : 51823

Our reference : Test Report 19/11190 Batch 1

Location:

Date samples received: 11th July, 2019

Status: Final report

Issue:

One sample was received for analysis on 11th July, 2019 of which one was scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

intlaument.

Lucas Halliwell

Project Co-ordinator

Please include all sections of this report if it is reproduced

Verde Environmental Consultants Client Name:

51823 Reference:

Location:

Contact: Donal Hogan Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

Report : Liquid

	Donal Hogan 19/11190							Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle H=H ₂ SO ₄ , Z=ZnAc, N=NaOH, HN=HN0 ₃						
EMT Sample No.	1-2													
Sample ID	AGW5													
Depth	7.80										Please se	e attached n	otes for all	
COC No / misc												ations and a		
Containers	V													
Sample Date	10/07/2019													
Sample Type	Ground Water													
Batch Number	1												Method	
Date of Receipt	11/07/2019										LOD/LOR	Units	No.	
Alcohols/Acetates														
Methyl Alcohol (Methanol)	<500										<500	ug/l	TM83/PM10	
Ethyl Alcohol (Ethanol)	<500										<500	ug/l	TM83/PM10	
i-Propyl Alcohol (Isopropanol)	<100										<100	ug/l	TM83/PM10	
n-Propyl Alcohol n-Butyl Alcohol	<100 <100										<100 <100	ug/l ug/l	TM83/PM10 TM83/PM10	
n-Pentyl Alcohol	<100										<100	ug/l	TM83/PM10	
n-Hexyl Alcohol	<100										<100	ug/l	TM83/PM10	
n-Heptyl Alcohol	<100										<100	ug/l	TM83/PM10	
Methyl Acetate	<100										<100	ug/l	TM83/PM10	
Ethyl Acetate	<100										<100	ug/l	TM83/PM10	
i-Propyl Acetate	<100										<100	ug/l	TM83/PM10	
n-Propyl Acetate n-Butyl Acetate	<100 <100										<100 <100	ug/l	TM83/PM10 TM83/PM10	
Tetrahydrofuran	969										<100	ug/l ug/l	TM83/PM10	
roughly aronaran	000										٠,	ug,.		
													ļ	

Client Name: Verde Environmental Consultants

Reference: 51823

Location:

Contact: Donal Hogan

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason							
	No deviating sample report results for job 19/11190												

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 19/11190

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is guoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.: 19/11190

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

# ISO17025 (UKAS Ref No. 4225) accredited - UK. SA ISO17025 (SANAS Ref No. 10729) accredited - South Africa B Indicates analyte found in associated method blank. DR Dilution required. M MCERTS accredited. NA Not applicable NAD No Asbestos Detected. ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample Trip Blank Sample		
B Indicates analyte found in associated method blank. DR Dilution required. M MCERTS accredited. NA Not applicable NAD No Asbestos Detected. ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample	#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
DR Dilution required. M MCERTS accredited. NA Not applicable NAD No Asbestos Detected. ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample	SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
M MCERTS accredited. NA Not applicable NAD No Asbestos Detected. ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample	В	Indicates analyte found in associated method blank.
NA Not applicable NAD No Asbestos Detected. ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample	DR	Dilution required.
NAD No Asbestos Detected. ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample	M	MCERTS accredited.
ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample	NA	Not applicable
NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample	NAD	No Asbestos Detected.
SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample	ND	None Detected (usually refers to VOC and/SVOC TICs).
SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample	NDP	No Determination Possible
W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample	SS	Calibrated against a single substance
+ AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample	SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample	W	Results expressed on as received basis.
* Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample	+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
An Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample	++	Result outside calibration range, results should be considered as indicative only and are not accredited.
CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample	*	Analysis subcontracted to an Element Materials Technology approved laboratory.
LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample	AD	Samples are dried at 35°C ±5°C
ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample	СО	Suspected carry over
NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample	LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
BS AQC Sample LB Blank Sample N Client Sample	ME	Matrix Effect
LB Blank Sample N Client Sample	NFD	No Fibres Detected
N Client Sample	BS	AQC Sample
·	LB	Blank Sample
TB Trip Blank Sample	N	Client Sample
	TB	Trip Blank Sample
OC Outside Calibration Range	ОС	Outside Calibration Range

EMT Job No: 19/11190

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM83	Modified USEPA method 8260. Determination of Alcohols, Acetates, Acetone, Fuel Oxygenates, THF and Cyclohexane by Headspace GC-MS	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.				

APPENDIX C

Mann Kendal Statistical Trend Analysis for Ammonium Concentrations

Quarterly Monitoring Report Verdé Ref: 51823

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Conducted By: Verde Concentration Units: mg/L Sampling Point ID: AGW1a AMMONIUM CONCENTRATION (mg/L) 19-Nov-08 1.5480 15-Jun-09 0.6450 18-Nov-09 0.2600 30-Jun-10 22-Nov-11 3.9700 22-May-12 8 0.0150 13-Nov-12 20-May-13 0.0387 10 14-Nov-13 0.6966 0.1677 12 17-Nov-14 0.3483 13 18-May-15 0.0800 14 7-Dec-15 0.1200 15 15-Mar-16 16 28-Apr-16 0.7200 17 18-May-16 0.6300 18 27-Jul-16 19 0.6100 25-Aug-16 28-Sep-16 20 27-Oct-16 0.7500 22 14-Dec-16 0.1300 23 16-Jan-17 0.3000 24 15-Feb-17 25 14-Mar-17 0.2500 26 19-Apr-17 22-May-17 0.4800 28 0.4400 10-Jul-17 30 14-Aug-17 0.5200 0.1800 14-Sep-17 32 33 20-Nov-17 0.0900 34 35 7-Mar-18 36 6-Jun-18 28-Sep-18 3-Dec-18 0.1800 38 39 12-Mar-19 0.0600 40 11-Jun-19 0.0500 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor: 97.8% **Concentration Trend:** Decreasing AGW1a -AGW1a Concentration (mg/L) 3.5 3 2.5 2 1.5 0.5 07/09 04/12 12/14 05/16 06/20 02/08 11/10 08/13 09/17 02/19 **Sampling Date**

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Conducted By: Verde Concentration Units: mg/L Sampling Point ID: AGW1a AMMONIUM CONCENTRATION (mg/L) 1 16-Jan-17 0.3000 15-Feb-17 3 14-Mar-17 0.2500 4 19-Apr-17 0.5500 5 0.4800 22-May-17 0.4600 7-Jun-17 6 10-Jul-17 0.4400 8 14-Aug-17 0.5200 14-Sep-17 24-Oct-17 0.1800 10 0.2100 20-Nov-17 0.0900 12 6-Dec-17 0.2700 13 7-Mar-18 0.0400 14 0.3200 6-Jun-18 15 28-Sep-18 16 0.1290 3-Dec-18 17 12-Mar-19 18 11-Jun-19 0.0500 19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor **Concentration Trend:** Decreasing AGW1a 0.5 AGW1a Concentration (mg/L) 0.4 0.3 0.2 0.1 11/16 03/17 06/17 09/17 12/17 04/18 07/18 10/18 02/19 05/19 08/19 Sampling Date

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Conducted By: Verde Concentration Units: mg/L Sampling Point ID: AGW2 AMMONIUM CONCENTRATION (mg/L) 20-Jun-05 61.7910 20-Nov-05 44.8920 33.6690 20-Jun-06 20-Nov-06 42.4410 14-Nov-07 2.4510 9-Jul-08 2.1930 19-Nov-08 8.7720 10 18-Nov-09 1.9400 12 10-May-11 2.1100 13 22-Nov-11 1.8600 14 22-May-12 13,1000 15 13-Nov-12 16 20-May-13 0.7353 17 14-Nov-13 1.9866 18 14-May-14 1.1481 19 17-Nov-14 1.4319 20 18-May-15 7-Dec-15 1.3400 22 15-Mar-16 0.9700 18-May-16 23 1.2900 24 27-Jul-16 1.9400 25 25-Aug-16 1.7500 26 28-Sep-16 1.1600 27-Oct-16 28 16-Jan-17 0.7600 30 15-Feb-17 14-Mar-17 32 33 14-Sep-17 3.3000 2.5800 34 20-Nov-17 35 7-Mar-18 36 6-Jun-18 28-Sep-18 3-Dec-18 3.1200 38 39 12-Mar-19 40 11-Jun-19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor: 99.9% **Concentration Trend:** Decreasing AGW2 60 -AGW2 Concentration (mg/L) 50 30 20 10 01/04 10/06 07/09 04/12 12/14 06/20 09/17 **Sampling Date**

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Concentration Units: mg/L Conducted By: Verde Sampling Point ID: AGW2 AMMONIUM CONCENTRATION (mg/L) 1 16-Jan-17 0.7600 15-Feb-17 0.7600 3 14-Mar-17 0.6600 4 7-Jun-17 0.9100 5 14-Sep-17 3.3000 20-Nov-17 2.5800 6 0.6800 7-Mar-18 8 1.8000 6-Jun-18 3.1200 28-Sep-18 10 1.8447 3-Dec-18 12-Mar-19 2.6200 12 11-Jun-19 4.7800 13 14 15 16 17 18 19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor **Concentration Trend:** Increasing AGW2 AGW2 Concentration (mg/L) 11/16 03/17 09/17 12/17 04/18 07/18 10/18 02/19 05/19 08/19 Sampling Date

Notes

- At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Conducted By: Verde Concentration Units: mg/L Sampling Point ID: AGW3 AMMONIUM CONCENTRATION (mg/L) 9-Jul-08 19-Nov-08 36.3780 15-Jun-09 30.9600 18-Nov-09 31.0900 10-May-11 19.0000 22-Nov-11 17.9000 8 22-May-12 18.8000 13-Nov-12 22.0461 10 20-May-13 12 13-May-14 22.9362 13 17-Nov-14 21.6720 14 18-May-15 15-Mar-16 24.1500 15 16 18-May-16 24.1100 17 27-Jul-16 32.2600 18 25-Aug-16 26,4400 19 28-Sep-16 20 27-Oct-16 36.6100 14-Dec-16 31.7600 22 16-Jan-17 34.6900 38.5100 23 15-Feb-17 24 14-Mar-17 31.7300 25 7-Jun-17 41.1600 26 12-Sep-17 41.5100 24-Oct-17 10.4600 28 7-Mar-18 37.2100 30 6-Jun-18 30.6100 18-Jun-18 32.1700 32 33 32.4300 35.5000 4-Jul-18 34 12-Jul-18 35 20-Jul-18 32,4200 36 27-Jul-18 28-Sep-18 3-Dec-18 29.1000 38 39 12-Mar-19 21 9400 40 11-Jun-19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor: 98.7% **Concentration Trend:** Increasing AGW3 40 -AGW3 Concentration (mg/L) 35 30 25 20 15 10 5 02/08 07/09 11/10 04/12 08/13 12/14 05/16 06/20 10/06 09/17 02/19 **Sampling Date**

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Concentration Units: mg/L Conducted By: Verde Sampling Point ID: AGW3 AMMONIUM CONCENTRATION (mg/L) 1 12-Sep-17 41.5100 24-Oct-17 10 4600 3 20-Nov-17 39.3600 4 7-Mar-18 37 2100 5 30.6100 6-Jun-18 18-Jun-18 32.1700 6 31.3600 32.4300 28-Jun-18 8 4-Jul-18 12-Jul-18 35.5000 10 20-Jul-18 32.4200 27-Jul-18 32.2690 12 28-Sep-18 29.1000 13 3-Dec-18 25.3356 14 12-Mar-19 21.9400 15 11-Jun-19 16 17 18 19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor **Concentration Trend:** Decreasing 45 AGW3 40 AGW3 Concentration (mg/L) 35 30 25 20 15 10 5 09/17 12/17 04/18 07/18 10/18 02/19 05/19 08/19 06/17 **Sampling Date**

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Conducted By: Verde Concentration Units: mg/L Sampling Point ID: AGW4 AMMONIUM CONCENTRATION (mg/L) 9-Jul-08 19-Nov-08 24.3810 15-Jun-09 18.8340 18-Nov-09 22.1900 10-May-11 15.7000 22-Nov-11 15.2000 8 16.9000 22-May-12 20-May-13 10 14-Nov-13 24.5616 12 13-May-14 28.2123 13 17-Nov-14 26.1483 14 18-May-15 7-Dec-15 27.6700 15 32.3100 16 15-Mar-16 33.6700 17 18-May-16 24.4000 18 27-Jul-16 28.4100 19 32.1400 25-Aug-16 20 27-Oct-16 31.3300 22 14-Dec-16 26.0000 32.6900 23 16-Jan-17 24 15-Feb-17 25 14-Mar-17 32.3800 26 7-Jun-17 14-Sep-17 28 20-Nov-17 7-Mar-18 38.5100 30 6-Jun-18 24.6000 18-Jun-18 32 33 37.2500 40.0900 4-Jul-18 34 12-Jul-18 35 20-Jul-18 38,4200 36 27-Jul-18 28-Sep-18 3-Dec-18 40.0600 38 39 12-Mar-19 4.7900 40 11-Jun-19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor: >99.9% **Concentration Trend:** Increasing AGW4 40 -AGW4 Concentration (mg/L) 35 30 25 20 15 10 5 02/08 11/10 04/12 08/13 12/14 05/16 06/20 10/06 07/09 09/17 02/19 **Sampling Date**

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Concentration Units: mg/L Conducted By: Verde Sampling Point ID: AGW4 AMMONIUM CONCENTRATION (mg/L) 1 20-Nov-17 33.9000 7-Mar-18 38.5100 3 6-Jun-18 24.6000 4 18-.lun-18 35 2700 37,4500 5 28-Jun-18 37.2500 4-Jul-18 6 12-Jul-18 40.0900 8 38.4200 20-Jul-18 27-Jul-18 36.4050 10 40.0600 28-Sep-18 3-Dec-18 35.7975 12 12-Mar-19 4.7900 13 11-Jun-19 18.4800 14 15 16 17 18 19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor Stable **Concentration Trend:** 45 AGW4 40 AGW4 Concentration (mg/L) 35 30 25 20 15 10 5 09/17 12/17 04/18 07/18 10/18 02/19 05/19 08/19 **Sampling Date**

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Conducted By: Verde Concentration Units: mg/L Sampling Point ID: AGW5 AMMONIUM CONCENTRATION (mg/L) 9-Jul-08 8.1270 19-Nov-08 0.9030 15-Jun-09 7.2240 18-Nov-09 12.7700 10-May-11 4.9000 22-Nov-11 4.0300 8 22-May-12 3.8700 13-Nov-12 10 20-May-13 10.2813 12 13-May-14 11.2875 13 17-Nov-14 13.3644 14 18-May-15 7-Dec-15 15.4000 15 16 24-Feb-16 19.3700 17 29-Feb-16 12.3400 18 15-Mar-16 14.4700 19 14-Apr-16 20 21-Apr-16 28-Apr-16 17.6000 22 4-May-16 17.5000 18-May-16 14.7300 23 24 27-Jul-16 21.0000 25 25-Aug-16 22.0900 26 28-Sep-16 19.1800 27-Oct-16 16.1300 28 16-Jan-17 14.0900 30 12.3800 10.1500 15-Feb-17 14-Mar-17 32 33 12-Sep-17 10.6700 34 20-Nov-17 35 7-Mar-18 8.1300 36 5-Jun-18 12.3800 9.2880 28-Sep-18 38 39 12-Mar-19 4.7000 40 11-Jun-19 7.6900 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor: 81.1% **Concentration Trend:** No Trend AGW5 -AGW5 Concentration (mg/L) 20 15 10 11/10 04/12 08/13 12/14 05/16 06/20 10/06 02/08 07/09 09/17 02/19 **Sampling Date**

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Concentration Units: mg/L Conducted By: Verde Sampling Point ID: AGW5 AMMONIUM CONCENTRATION (mg/L) 1 7-Jun-17 12.5700 12-Sep-17 10.6700 3 20-Nov-17 7.7100 4 7-Mar-18 2 3300 5 8.1300 5-Jun-18 28-Sep-18 12.3800 6 3-Dec-18 12-Mar-19 9.2880 8 4.7000 11-Jun-19 7.6900 10 12 13 14 15 16 17 18 19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor Stable **Concentration Trend:** 14 AGW5 12 AGW5 Concentration (mg/L) 10 03/17 06/17 09/17 12/17 04/18 07/18 10/18 02/19 05/19 08/19 **Sampling Date**

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Conducted By: Verde Concentration Units: mg/L Sampling Point ID: AGW6 AMMONIUM CONCENTRATION (mg/L) 20-Jun-05 0.0000 20-Nov-05 0.0000 20-Jun-06 0.0000 20-Nov-06 0.7740 14-Nov-07 0.0000 9-Jul-08 0.0000 8 19-Nov-08 0.0000 10 18-Nov-09 0.2600 12 10-May-11 0.0150 13 22-Nov-11 0.0150 14 22-May-12 0.0150 15 13-Nov-12 0.0150 16 20-May-13 0.1161 17 14-Nov-13 0.0387 18 14-May-14 0.0500 19 17-Nov-14 0.0387 20 18-May-15 7-Dec-15 0.0150 22 15-Mar-16 0.0700 18-May-16 23 0.0600 24 27-Jul-16 25 25-Aug-16 0.0600 26 28-Sep-16 0.0400 27-Oct-16 28 0.0500 16-Jan-17 30 15-Feb-17 14-Mar-17 32 33 14-Sep-17 34 20-Nov-17 35 7-Mar-18 0.0000 36 6-Jun-18 28-Sep-18 4-Dec-18 0.0000 38 39 12-Mar-19 0.0000 40 11-Jun-19 0.0000 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor: 79.8% **Concentration Trend:** No Trend AGW6 0.8 -AGW6 Concentration (mg/L) 0.7 0.6 0.5 0.4 0.3 0.2 0.1 01/04 12/14 06/20 10/06 07/09 04/12 09/17 **Sampling Date**

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Concentration Units: mg/L Conducted By: Verde Sampling Point ID: AGW6 AMMONIUM CONCENTRATION (mg/L) 1 16-Jan-17 0.0500 15-Feb-17 0.0400 3 14-Mar-17 0.0400 4 7-Jun-17 0.0500 5 14-Sep-17 0.0500 20-Nov-17 0.0000 6 7-Mar-18 0.0000 8 0.0500 6-Jun-18 0.0000 28-Sep-18 4-Dec-18 10 0.0000 12-Mar-19 0.0000 12 11-Jun-19 0.0000 13 14 15 16 17 18 19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor **Concentration Trend:** Decreasing 0.06 AGW6 0.05 AGW6 Concentration (mg/L) 0.04 0.03 0.02 0.01 11/16 03/17 06/17 09/17 12/17 04/18 07/18 10/18 02/19 05/19 08/19 **Sampling Date**

Notes

- At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Conducted By: Verde Concentration Units: mg/L Sampling Point ID: AGW8 AMMONIUM CONCENTRATION (mg/L) 20-Jun-05 0.2580 20-Nov-05 0.2580 0.0000 20-Jun-06 20-Nov-06 14-Nov-07 0.0000 9-Jul-08 0.0000 8 19-Nov-08 0.0000 10 18-Nov-09 0.3900 12 10-May-11 0.0150 13 22-Nov-11 0.0150 14 22-May-12 0.0150 15 13-Nov-12 0.0150 16 20-May-13 0.0150 17 14-Nov-13 0.0645 18 14-May-14 0.0150 19 17-Nov-14 0.0150 20 18-May-15 0.0150 7-Dec-15 0.0150 22 15-Mar-16 0.0500 18-May-16 23 24 27-Jul-16 0.0150 25 25-Aug-16 0.0150 26 28-Sep-16 0.0150 27-Oct-16 0.0150 28 0.0150 16-Jan-17 0.0150 30 15-Feb-17 0.0150 14-Mar-17 0.0150 32 33 14-Sep-17 0.0150 34 20-Nov-17 0.0000 35 7-Mar-18 0.0000 36 6-Jun-18 0.0300 28-Sep-18 4-Dec-18 0.0000 38 39 12-Mar-19 0.0500 40 11-Jun-19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor: 56.2% **Concentration Trend:** No Trend 0.45 AGW8 0.4 -AGW8 Concentration (mg/L) 0.35 0.3 0.25 0.2 0.1 0.05 01/04 07/09 04/12 12/14 06/20 10/06 09/17 **Sampling Date**

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Conducted By: Verde Concentration Units: mg/L Sampling Point ID: AGW8 AMMONIUM CONCENTRATION (mg/L) 1 16-Jan-17 0.0150 15-Feb-17 0.0150 3 14-Mar-17 0.0150 4 7-Jun-17 0.0150 5 0.0150 14-Sep-17 20-Nov-17 6 0.0000 7-Mar-18 0.0000 8 6-Jun-18 0.0300 28-Sep-18 4-Dec-18 0.0000 10 0.0000 12-Mar-19 0.0500 12 11-Jun-19 0.0800 13 14 15 16 17 18 19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor No Trend **Concentration Trend:** 0.09 AGW8 0.08 AGW8 Concentration (mg/L) 0.07 0.06 0.05 0.04 0.03 0.02 0.01 11/16 03/17 06/17 09/17 12/17 07/18 10/18 02/19 05/19 08/19 **Sampling Date**

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Conducted By: Verde Concentration Units: mg/L Sampling Point ID: AGW9 AMMONIUM CONCENTRATION (mg/L) 20-Jun-05 1.1610 20-Nov-05 1.5480 4.7730 20-Jun-06 20-Nov-06 2.1930 14-Nov-07 5.5470 9-Jul-08 6.1920 19-Nov-08 4.2570 5.4180 10 18-Nov-09 4.1300 12 10-May-11 13 22-Nov-11 65.4000 14 22-May-12 15 13-Nov-12 16 20-May-13 17 14-Nov-13 4.1796 18 14-May-14 3.2800 19 17-Nov-14 20 18-May-15 3.1100 7-Dec-15 3.8600 22 15-Mar-16 2.0000 18-May-16 23 3.0100 24 27-Jul-16 5.2100 25 25-Aug-16 4.6000 26 28-Sep-16 4.9000 27-Oct-16 28 16-Jan-17 3.3700 30 15-Feb-17 14-Mar-17 3.3700 32 33 14-Sep-17 34 20-Nov-17 35 7-Mar-18 36 6-Jun-18 1.6700 28-Sep-18 2.9300 38 39 12-Mar-19 2.3100 40 11-Jun-19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor: 99.1% **Concentration Trend:** Decreasing AGW9 60 -AGW9 Concentration (mg/L) 50 30 20 10 07/09 04/12 12/14 06/20 01/04 10/06 09/17 **Sampling Date**

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Concentration Units: mg/L Conducted By: Verde Sampling Point ID: AGW9 AMMONIUM CONCENTRATION (mg/L) 1 16-Jan-17 3.3700 15-Feb-17 4 1000 3 14-Mar-17 3.3700 4 7-Jun-17 3 8200 5 3.8400 14-Sep-17 20-Nov-17 2.2700 6 7-Mar-18 1.5800 8 1.6700 6-Jun-18 28-Sep-18 4-Dec-18 2.9300 3.5346 10 12-Mar-19 2.3100 12 11-Jun-19 2.9300 13 14 15 16 17 18 19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor Stable **Concentration Trend:** 4.5 AGW9 AGW9 Concentration (mg/L) 3.5 3 2.5 2 1.5 1 0.5 11/16 03/17 06/17 09/17 12/17 04/18 07/18 10/18 02/19 05/19 08/19 **Sampling Date**

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Conducted By: Verde Concentration Units: mg/L Sampling Point ID: AGW10 AMMONIUM CONCENTRATION (mg/L) 20-Jun-05 20-Nov-05 6.0630 20-Jun-06 10.0620 20-Nov-06 5.4180 14-Nov-07 7.3530 9-Jul-08 4.1280 8 11.0940 19-Nov-08 10 18-Nov-09 7.8700 12 10-May-11 5.0100 13 22-Nov-11 4.1500 14 22-May-12 15 13-Nov-12 16 20-May-13 5.7534 17 14-Nov-13 5.3406 18 14-May-14 19 17-Nov-14 3.9100 20 18-May-15 7-Dec-15 2.0400 22 15-Mar-16 4.0500 18-May-16 23 24 27-Jul-16 25 25-Aug-16 4.5100 26 28-Sep-16 27-Oct-16 5.7100 28 16-Jan-17 4.3500 30 15-Feb-17 14-Mar-17 3.3400 32 33 14-Sep-17 4.4900 34 20-Nov-17 35 7-Mar-18 1.9700 36 6-Jun-18 4.2100 4.6600 2.7090 28-Sep-18 38 39 12-Mar-19 2.3700 40 11-Jun-19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor: **Concentration Trend:** Decreasing AGW10 10 AGW10 Concentration (mg/L) 8 6 2 01/04 10/06 07/09 04/12 12/14 06/20 09/17 **Sampling Date**

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Conducted By: Verde Concentration Units: mg/L Sampling Point ID: AGW10 AMMONIUM CONCENTRATION (mg/L) 1 16-Jan-17 4.3500 15-Feb-17 3.5700 3 14-Mar-17 3.3400 4 7-Jun-17 4 5800 5 4,4900 14-Sep-17 20-Nov-17 4.7300 6 7-Mar-18 1.9700 8 4.2100 6-Jun-18 28-Sep-18 4-Dec-18 4.6600 10 2.7090 12-Mar-19 2.3700 12 11-Jun-19 4.0900 13 14 15 16 17 18 19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor Stable **Concentration Trend:** AGW10 AGW10 Concentration (mg/L) 1.5 0.5 11/16 03/17 06/17 09/17 12/17 04/18 07/18 10/18 02/19 05/19 08/19 **Sampling Date**

Notes:

- At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Conducted By: Verde Concentration Units: mg/L Sampling Point ID: AGW11a AMMONIUM CONCENTRATION (mg/L) 9-Jul-08 19-Nov-08 11.3520 9.0432 16-Jun-09 18-Nov-09 15.0900 10-May-11 8.4600 22-Nov-11 8 22-May-12 9.6700 13-Nov-12 10 20-May-13 11.8680 12 13-May-14 12.0400 13 17-Nov-14 13.5192 14 18-May-15 7-Dec-15 16.3800 26.3800 15 16 15-Mar-16 18.3000 17 18-May-16 26.7700 18 27-Jul-16 19 33.7500 25-Aug-16 20 28-Sep-16 27-Oct-16 25.4400 22 14-Dec-16 23.5700 23 16-Jan-17 20.7500 24 15-Feb-17 25 18.0300 14-Mar-17 26 7-Jun-17 34.0200 12-Sep-17 28 20-Nov-17 43.1400 7-Mar-18 30 41.2400 24-Apr-18 5-Jun-18 32 33 35.7200 36.1200 6-Sep-18 34 28-Sep-18 35 4-Dec-18 24,1359 23,9200 36 12-Mar-19 11-Jun-19 24.4600 38 39 40 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor: >99.9% **Concentration Trend:** Increasing AGW11a -AGW11a Concentration (mg/L) 10 10/06 02/08 07/09 11/10 04/12 08/13 12/14 05/16 09/17 02/19 06/20 **Sampling Date**

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Conducted By: Verde Concentration Units: mg/L Sampling Point ID: AGW11a AMMONIUM CONCENTRATION (mg/L) 1 14-Mar-17 18.0300 7-Jun-17 34 0200 3 12-Sep-17 43.8100 4 20-Nov-17 37 5400 5 43.1400 7-Mar-18 41.2400 6 24-Apr-18 57.8800 42.2500 5-Jun-18 14-Aug-18 8 6-Sep-18 35.7200 10 36.1200 28-Sep-18 4-Dec-18 24.1359 12 12-Mar-19 23.9200 13 11-Jun-19 24.4600 14 15 16 17 18 19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor Stable **Concentration Trend:** 70 AGW11a 60 AGW11a Concentration (mg/L) 50 40 30 20 10 11/16 03/17 09/17 12/17 04/18 07/18 10/18 02/19 05/19 08/19 06/17 **Sampling Date**

Notes

- At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Concentration Units: mg/L Conducted By: Verde Sampling Point ID: AMMONIUM CONCENTRATION (mg/L) 9-Jul-08 13.0290 19-Nov-08 3.4830 15-Jun-09 4 30-Jun-10 11.3000 6 10-May-11 12.0000 22-Nov-11 12 1000 8 22-May-12 1.5800 13-Nov-12 15.5000 9 10 20-May-13 21.0141 14-Nov-13 22.2912 12 13-May-14 22.1100 13 17-Nov-14 18-May-15 14 16 15-Mar-16 22.4700 17 18-May-16 18 27-Jul-16 27.9300 19 25-Aug-16 25.1100 20 28-Sep-16 30.6400 21 27-Oct-16 37.7300 14-Dec-16 36.9200 22 16-Jan-17 24 15-Feb-17 39.1800 25 14-Mar-17 39.4200 26 7-Jun-17 35.4400 27 12-Sep-17 41.6500 28 20-Nov-17 25.7200 29 7-Mar-18 33.6300 30 5-Jun-18 30.0200 31 35.8900 28-Sep-18 3-Dec-18 23.9811 33 12-Mar-19 28.3900 11-Jun-19 Coefficient of Variation: Mann-Kendall Statistic (S): 341 Confidence Factor: >99.9% Concentration Trend: Increasing 45 AGW12 40 AGW12 Concentration (mg/L) 35 30 25 20 15 10 5 04/12 08/13 12/14 05/16 10/06 02/08 07/09 11/10 09/17 02/19 06/20 **Sampling Date**

Notes:

- At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Conducted By: Verde Concentration Units: mg/L Sampling Point ID: AGW12 AMMONIUM CONCENTRATION (mg/L) 1 15-Feb-17 39.1800 14-Mar-17 39 4200 3 7-Jun-17 35.4400 4 12-Sep-17 41.6500 5 20-Nov-17 25.7200 7-Mar-18 33.6300 6 5-Jun-18 30.0200 8 35.8900 28-Sep-18 3-Dec-18 23.9811 10 12-Mar-19 28.3900 11-Jun-19 22.4400 12 13 14 15 16 17 18 19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor **Concentration Trend:** Decreasing 45 AGW12 40 AGW12 Concentration (mg/L) 35 30 25 20 15 10 5 11/16 03/17 06/17 09/17 12/17 04/18 07/18 10/18 02/19 05/19 08/19 **Sampling Date**

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Conducted By: Verde Concentration Units: mg/L Sampling Point ID: AGW13 AMMONIUM CONCENTRATION (mg/L) 9-Jul-08 12.5130 19-Nov-08 1.2900 15-Jun-09 12.3428 18-Nov-09 10.9700 10-May-11 6.9900 22-Nov-11 8.3100 8 22-May-12 5.9000 13-Nov-12 10 20-May-13 10.6425 12 14-May-14 13 17-Nov-14 7.1724 14 18-May-15 7-Dec-15 3,4600 15 16 15-Mar-16 1.5200 17 28-Apr-16 2.3000 18 18-May-16 5.4900 19 27-Jul-16 20 25-Aug-16 0.8100 28-Sep-16 4.0000 22 27-Oct-16 0.8000 23 14-Dec-16 24 8.7700 25 15-Feb-17 7.5300 26 14-Mar-17 8.7200 19-Apr-17 28 11.8100 7-Jun-17 11.0800 30 10-Jul-17 14-Aug-17 16.1500 32 33 11.4900 15-Nov-17 34 7-Mar-18 35 6-Jun-18 8.6100 36 28-Sep-18 3-Dec-18 38 39 11-Jun-19 40 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor: 76.9% **Concentration Trend:** No Trend AGW13 16 -AGW13 Concentration (mg/L) 14 12 10 8 2 02/08 07/09 11/10 04/12 08/13 12/14 05/16 09/17 02/19 06/20 10/06 **Sampling Date**

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Concentration Units: mg/L Conducted By: Verde Sampling Point ID: AGW13 AMMONIUM CONCENTRATION (mg/L) 1 14-Aug-17 16.1500 14-Sep-17 13 1580 3 15-Nov-17 11.4900 4 7-Mar-18 5 5000 5 8.6100 6-Jun-18 6 28-Sep-18 9.2000 3-Dec-18 12-Mar-19 7.9851 8 7.0000 11-Jun-19 6.7500 10 12 13 14 15 16 17 18 19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor **Concentration Trend:** Decreasing 18 AGW13 16 AGW13 Concentration (mg/L) 14 12 10 06/17 09/17 12/17 04/18 07/18 10/18 02/19 05/19 08/19 **Sampling Date**

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Conducted By: Verde Concentration Units: mg/L Sampling Point ID: AGW14 AMMONIUM CONCENTRATION (mg/L) 7-Dec-15 25-Jan-16 0.0500 14.9900 29-Feb-16 15-Mar-16 18.1100 7-Apr-16 14-Apr-16 21.6000 21-Apr-16 21.8000 28-Apr-16 17.9000 4-May-16 10 18-May-16 17.8200 12 10-Jun-16 18.6300 13 15-Jun-16 17.6000 14 23-Jun-16 18.7600 15 1-Jul-16 16 14-Jul-16 17.2300 17 21-Jul-16 19.9600 18 27-Jul-16 21.8800 19 25-Aug-16 20 27-Oct-16 16.4300 22 14-Dec-16 16.0200 23 16-Jan-17 18.9100 24 15-Feb-17 25 17.0500 14-Mar-17 26 7-Jun-17 18.9100 12-Sep-17 28 15-Nov-17 7-Mar-18 18.4000 30 5-Jun-18 18-Jun-18 32 33 23.5000 25.6200 4-Jul-18 34 12-Jul-18 35 20-Jul-18 24.0400 36 27-Jul-18 28-Sep-18 3-Dec-18 26.9000 38 39 12-Mar-19 19,9300 40 11-Jun-19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor: >99.9% **Concentration Trend:** Increasing AGW14 40 -AGW14 Concentration (mg/L) 35 30 25 20 15 10 5 08/16 03/17 09/17 04/18 10/18 05/19 12/19 07/15 01/16 **Sampling Date**

Notes

- At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥90% = Probably Increasing or Probably Decreasing;
 <90% and S>0 = No Trend;
 <90%, S≤0, and COV ≥ 1 = No Trend;
 <90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Concentration Units: mg/L Conducted By: Verde Sampling Point ID: AGW14 AMMONIUM CONCENTRATION (mg/L) 1 7-Jun-17 18.9100 12-Sep-17 25 5800 3 15-Nov-17 23.9400 4 7-Mar-18 18 4000 5 23,6800 5-Jun-18 38.9300 18-Jun-18 6 23.4700 23.5000 28-Jun-18 8 4-Jul-18 12-Jul-18 25.6200 10 24.0400 20-Jul-18 27-Jul-18 24.2810 12 28-Sep-18 26.9000 13 3-Dec-18 21.8010 14 12-Mar-19 19.9300 15 11-Jun-19 16 17 18 19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor Stable **Concentration Trend:** 45 AGW14 40 AGW14 Concentration (mg/L) 35 30 25 20 15 10 5 06/17 09/17 12/17 04/18 07/18 10/18 02/19 05/19 08/19 03/17 **Sampling Date**

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Conducted By: Verde Concentration Units: mg/L Sampling Point ID: AGW16 AMMONIUM CONCENTRATION (mg/L) 1 4-May-16 11.7000 18-May-16 11 1200 3 27-Jul-16 26.4100 4 25-Aug-16 23 9200 19.1500 5 28-Sep-16 26.2400 6 27-Oct-16 23.9200 24.2900 14-Dec-16 8 16-Jan-17 24.3300 15-Feb-17 10 14-Mar-17 22.7800 19-Apr-17 23.5300 12 22-May-17 24.9800 13 7-Jun-17 25.2900 14 10-Jul-17 25.5600 15 14-Aug-17 16 12-Sep-17 20.4900 17 18 15-Nov-17 17.7100 19 20 21 5-Jun-18 Sep-18 19.8800 22 3-Dec-18 17.8278 23 13-Mar-19 17 5956 24 11-Jun-19 16.6600 25 26 27 28 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor: **Concentration Trend:** Decreasing 30 AGW16 25 AGW16 Concentration (mg/L) 20 15 10 5 0 01/16 08/16 03/17 09/17 04/18 10/18 05/19 12/19 **Sampling Date**

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Concentration Units: mg/L Conducted By: Verde Sampling Point ID: AGW16 AMMONIUM CONCENTRATION (mg/L) 1 10-Jul-17 25.5600 14-Aug-17 21 2200 3 12-Sep-17 20.4900 4 24-Oct-17 17 7700 5 15-Nov-17 17.7100 7-Mar-18 18.9000 6 5-Jun-18 18.2600 8 19.8800 28-Sep-18 3-Dec-18 17.8278 10 13-Mar-19 17.5956 11-Jun-19 16.6600 12 13 14 15 16 17 18 19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor 74 1% Stable **Concentration Trend:** AGW16 25 AGW16 Concentration (mg/L) 20 15 10 5 03/17 06/17 09/17 12/17 04/18 07/18 10/18 02/19 05/19 08/19 **Sampling Date**

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Concentration Units: mg/L Conducted By: Verde Sampling Point ID: AGW17 AMMONIUM CONCENTRATION (mg/L) 1 4-May-16 39.5000 18-May-16 31,2000 3 27-Jul-16 37.5800 4 25-Aug-16 29 1200 5 32,9000 27-Oct-16 27.3500 14-Dec-16 6 28.7400 27.1200 16-Jan-17 8 15-Feb-17 14-Mar-17 27.4400 10 7-Jun-17 27.2400 12-Sep-17 32.2200 12 15-Nov-17 32.7000 13 7-Mar-18 32.7600 14 25.6700 5-Jun-18 15 28-Sep-18 30.5200 16 3-Dec-18 27.3093 17 11-Jun-19 18 19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor **Concentration Trend:** Decreasing 45 AGW17 40 AGW17 Concentration (mg/L) 35 30 25 20 15 10 5 01/16 08/16 03/17 09/17 04/18 10/18 05/19 12/19 **Sampling Date**

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Concentration Units: mg/L Conducted By: Verde Sampling Point ID: AGW17 AMMONIUM CONCENTRATION (mg/L) 1 7-Jun-17 27.2400 12-Sep-17 3 15-Nov-17 32,7000 4 7-Mar-18 32,7600 5 5-Jun-18 25.6700 28-Sep-18 30.5200 6 3-Dec-18 27.3093 8 11-Jun-19 26.1300 10 12 13 14 15 16 17 18 19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor **Concentration Trend:** Decreasing 35 AGW17 30 AGW17 Concentration (mg/L) 25 20 10 5 03/17 06/17 09/17 12/17 04/18 07/18 10/18 02/19 05/19 08/19 **Sampling Date**

Notes

- At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Concentration Units: mg/L Conducted By: Verde Sampling Point ID: AGW18 AMMONIUM CONCENTRATION (mg/L) 1 18-May-16 5.4000 27-Jul-16 7 1700 3 25-Aug-16 6.1600 4 28-Sep-16 0.0400 5 8.3600 27-Oct-16 14-Dec-16 4.7800 6 16-Jan-17 5.9400 8 15-Feb-17 5.8200 14-Mar-17 5.8300 10 7-Jun-17 6.5000 12-Sep-17 6.5900 12 15-Nov-17 6.6700 13 7-Mar-18 6.2400 14 5.5600 6-Jun-18 15 28-Sep-18 5.8100 16 4-Dec-18 5.8050 17 13-Mar-19 18 11-Jun-19 19 20 21 22 23 24 25 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor: 79.0% **Concentration Trend:** No Trend AGW18 -AGW18 Concentration (mg/L) 5 03/17 09/17 04/18 10/18 01/16 08/16 05/19 12/19 **Sampling Date**

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Concentration Units: mg/L Conducted By: Verde Sampling Point ID: AGW18 AMMONIUM CONCENTRATION (mg/L) 1 7-Jun-17 6.5000 12-Sep-17 6.5900 3 15-Nov-17 6.6700 4 7-Mar-18 6 2400 5 5.5600 6-Jun-18 5.8100 6 28-Sep-18 4-Dec-18 5.8050 8 13-Mar-19 4.9020 4.9800 11-Jun-19 10 12 13 14 15 16 17 18 19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor No Trend **Concentration Trend:** AGW18 AGW18 Concentration (mg/L) 03/17 06/17 09/17 12/17 04/18 07/18 10/18 02/19 05/19 08/19 **Sampling Date**

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Concentration Units: mg/L Conducted By: Verde Sampling Point ID: AGW19 AMMONIUM CONCENTRATION (mg/L) 1 14-Aug-18 51.5200 6-Sep-18 30 4800 3 3-Dec-18 38.7300 4 13-Mar-19 30 6762 5 51.6400 11-Jun-19 6 8 10 12 13 14 15 16 17 18 19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor Concentration Trend: Prob. Decreasing AGW19 50 AGW19 Concentration (mg/L) 40 30 20 10 07/18 09/18 10/18 12/18 02/19 03/19 05/19 07/19 **Sampling Date**

Notes

- At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Concentration Units: mg/L Conducted By: Verde Sampling Point ID: AGW20 AMMONIUM CONCENTRATION (mg/L) 1 14-Aug-18 62.0600 6-Sep-18 3 3-Dec-18 52.5800 13-Mar-19 53 5737 5 11-Jun-19 26,2100 6 8 10 12 13 14 15 16 17 18 19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor **Concentration Trend:** Decreasing 70 AGW20 60 AGW20 Concentration (mg/L) 50 30 20 10 07/18 09/18 10/18 12/18 02/19 03/19 05/19 07/19 **Sampling Date**

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Concentration Units: mg/L Conducted By: Verde Sampling Point ID: MW204 AMMONIUM CONCENTRATION (mg/L) 1 18-May-16 10.0600 25-Aug-16 10.3800 3 28-Sep-16 4.8900 4 27-Oct-16 0.2300 5 14-Dec-16 11,2500 10.4200 6 16-Jan-17 15-Feb-17 27.6800 8 32.9000 14-Mar-17 19-Apr-17 16.9300 10 16.4500 22-May-17 7-Jun-17 16.5400 12 10-Jul-17 13.6300 13 14-Aug-17 17.0000 14 12-Sep-17 13.7000 15 24-Oct-17 11.4700 16 15-Nov-17 14.8900 17 7-Mar-18 18 6-Jun-18 14.6700 19 28-Sep-18 20 21 7.5078 13-Mar-19 22 11-Jun-19 23 24 25 26 27 28 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor: Concentration Trend: No Trend 35 MW204 30 -MW204 Concentration (mg/L) 25 20 15 10 0 01/16 08/16 03/17 09/17 04/18 10/18 05/19 12/19 **Sampling Date**

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Conducted By: Verde Concentration Units: mg/L Sampling Point ID: MW204 AMMONIUM CONCENTRATION (mg/L) 1 14-Mar-17 32.9000 19-Apr-17 16 9300 3 22-May-17 16.4500 4 7-Jun-17 16 5400 5 13,6300 10-Jul-17 17.0000 6 14-Aug-17 12-Sep-17 13.7000 8 11.4700 24-Oct-17 15-Nov-17 14.8900 10 7-Mar-18 5.2100 6-Jun-18 14.6700 12 28-Sep-18 8.8000 13 3-Dec-18 7.5078 14 13-Mar-19 5.5341 15 11-Jun-19 16 17 18 19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor Stable **Concentration Trend:** 35 MW204 30 -MW204 Concentration (mg/L) 25 20 10 5 11/16 03/17 06/17 09/17 12/17 04/18 07/18 10/18 02/19 05/19 08/19 Sampling Date

Notes

- At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Concentration Units: mg/L Conducted By: Verde Sampling Point ID: MW227 AMMONIUM CONCENTRATION (mg/L) 1 18-May-16 6.8300 27-Jul-16 14,4000 3 25-Aug-16 12.2900 4 28-Sep-16 4 4400 5 13,7500 27-Oct-16 14-Dec-16 10.8600 6 16-Jan-17 10.7500 8 15-Feb-17 8.8300 14-Mar-17 8.7200 10 7-Jun-17 11.0800 12-Sep-17 7.6500 12 15-Nov-17 5.7300 13 7-Mar-18 1.7000 14 5.2400 5-Jun-18 15 28-Sep-18 16 3-Dec-18 2.1801 17 13-Mar-19 18 11-Jun-19 1.8200 19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor **Concentration Trend:** Decreasing 16 MW227 14 MW227 Concentration (mg/L) 12 10 6 01/16 08/16 03/17 09/17 04/18 10/18 05/19 12/19 **Sampling Date**

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Concentration Units: mg/L Conducted By: Verde Sampling Point ID: MW227 AMMONIUM CONCENTRATION (mg/L) 1 7-Jun-17 11.0800 12-Sep-17 7 6500 3 15-Nov-17 5.7300 4 7-Mar-18 1 7000 5 5.2400 5-Jun-18 28-Sep-18 0.7800 6 3-Dec-18 13-Mar-19 2.1801 8 2.1285 11-Jun-19 1.8200 10 12 13 14 15 16 17 18 19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor **Concentration Trend:** Decreasing 12 MW227 10 -MW227 Concentration (mg/L) 8 07/18 03/17 06/17 09/17 12/17 04/18 10/18 02/19 05/19 08/19 **Sampling Date**

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Concentration Units: mg/L Conducted By: Verde Sampling Point ID: MW228 AMMONIUM CONCENTRATION (mg/L) 1 18-May-16 3.5800 27-Jul-16 3 25-Aug-16 0.7100 4 28-Sep-16 25 6900 5 0.1700 27-Oct-16 14-Dec-16 6 6.6700 9.7200 16-Jan-17 8 15-Feb-17 14-Mar-17 0.4400 10 11.2300 7-Jun-17 12-Sep-17 11.1900 12 15-Nov-17 7.5100 13 7-Mar-18 5.1200 14 6-Jun-18 8.7500 15 28-Sep-18 16 3-Dec-18 17 13-Mar-19 2.1543 18 11-Jun-19 5.8500 19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor Stable **Concentration Trend:** MW228 25 -MW228 Concentration (mg/L) 20 15 10 5 01/16 08/16 09/17 04/18 10/18 05/19 12/19 03/17 **Sampling Date**

Notes:

- At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Concentration Units: mg/L Conducted By: Verde Sampling Point ID: MW228 AMMONIUM CONCENTRATION (mg/L) 1 7-Jun-17 11.2300 12-Sep-17 11,1900 3 15-Nov-17 7.5100 4 7-Mar-18 5 1200 5 8.7500 6-Jun-18 8.0400 6 28-Sep-18 3-Dec-18 13-Mar-19 3.7023 2.1543 8 11-Jun-19 5.8500 10 12 13 14 15 16 17 18 19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor **Concentration Trend:** Decreasing 12 MW228 10 MW228 Concentration (mg/L) 8 03/17 06/17 09/17 12/17 04/18 07/18 10/18 02/19 05/19 08/19 **Sampling Date**

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Concentration Units: mg/L Conducted By: Verde Sampling Point ID: MW301 AMMONIUM CONCENTRATION (mg/L) 1 12-Jul-18 14.0557 4-Dec-18 7 8900 3 13-Mar-19 9.2880 4 11-.lun-19 9 4800 5 6 8 10 12 13 14 15 16 17 18 19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor Stable **Concentration Trend:** 16 MW301 14 MW301 Concentration (mg/L) 05/18 07/18 09/18 10/18 12/18 02/19 03/19 05/19 07/19 **Sampling Date**

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Concentration Units: mg/L Conducted By: Verde Sampling Point ID: MW304 AMMONIUM CONCENTRATION (mg/L) 1 12-Jul-18 18.9281 4-Dec-18 0.1200 3 13-Mar-19 0.0774 4 11-.lun-19 9 1100 5 6 8 10 12 13 14 15 16 17 18 19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor No Trend **Concentration Trend:** MW304 18 MW304 Concentration (mg/L) 16 05/18 07/18 09/18 10/18 12/18 02/19 03/19 05/19 07/19 **Sampling Date**

Notes

- At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Concentration Units: mg/L Conducted By: Verde Sampling Point ID: MW305 AMMONIUM CONCENTRATION (mg/L) 1 12-Jul-18 15.0831 4-Dec-18 0.3400 3 13-Mar-19 3.3153 4 11-.lun-19 4 1200 5 6 8 10 12 13 14 15 16 17 18 19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor No Trend **Concentration Trend:** 16 MW305 14 MW305 Concentration (mg/L) 12 05/18 07/18 09/18 10/18 12/18 02/19 03/19 05/19 07/19 **Sampling Date**

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Concentration Units: mg/L Conducted By: Verde Sampling Point ID: CP AMMONIUM CONCENTRATION (mg/L) 1 27-Jul-16 0.9300 25-Aug-16 0.7300 3 27-Oct-16 0.7500 4 14-Dec-16 0.6800 5 16-Jan-17 0.7500 15-Feb-17 0.7900 6 14-Mar-17 0.7300 8 22-May-17 0.7900 7-Jun-17 0.7000 10 10-Jul-17 0.7600 14-Aug-17 0.7000 12 12-Sep-17 0.0150 13 24-Oct-17 0.8600 14 15-Nov-17 0.7400 15 7-Mar-18 0.6600 16 0.8400 5-Jun-18 17 18 28-Jun-18 0.6900 19 28-Sep-18 20 21 0.8127 13-Mar-19 22 11-Jun-19 0.7300 23 24 25 Coefficient of Variation: Mann-Kendall Statistic (S): 52.2% Confidence Factor **Concentration Trend:** No Trend 0.9 Concentration (mg/L) 0.8 0.7 0.6 0.5 0.3 0.2 0.1 03/17 04/18 10/18 01/16 08/16 05/19 12/19 **Sampling Date**

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 27-Jun-19 Job ID: 51823 Facility Name: GSK Cork Constituent: Ammonium Conducted By: Verde Concentration Units: mg/L Sampling Point ID: CP AMMONIUM CONCENTRATION (mg/L) 1 10-Jul-17 0.7600 14-Aug-17 0.7000 3 12-Sep-17 0.0150 4 24-Oct-17 0.8600 5 15-Nov-17 0.7400 7-Mar-18 0.6600 6 5-Jun-18 0.8400 0.7700 8 18-Jun-18 0.6900 28-Jun-18 10 0.7200 28-Sep-18 3-Dec-18 0.8127 12 13-Mar-19 0.8772 13 11-Jun-19 0.7300 14 15 16 17 18 19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor No Trend **Concentration Trend:** 0.9 Concentration (mg/L) 0.8 0.7 0.5 0.3 0.2 0.1 06/17 09/17 12/17 04/18 07/18 10/18 02/19 05/19 08/19 03/17 **Sampling Date**

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

Mann-Kendall Trend Analysis		
GSK Ammonium Groundwater Results from 2005 to 2019		
Well ID	Long-term Trend	Short-term Trend
AGW1a	Decreasing	Decreasing
AGW2	Decreasing	Increasing
AGW3	Increasing	Decreasing
AGW4	Increasing	Stable
AGW5	No Trend	Stable
AGW6	No Trend	Decreasing
AGW8	No Trend	No Trend
AGW9	Decreasing	Stable
AGW10	Decreasing	Stable
AGW11a	Increasing	Stable
AGW12	Increasing	Decreasing
AGW13	No trend	Decreasing
AGW14	Increasing	Stable
AGW16	Decreasing	Stable
AGW17	Decreasing	Decreasing
AGW18	No Trend	No Trend
AGW19	N/A	Probably Decreasing
AGW20	N/A	Decreasing
MW204	No Trend	Stable
MW227	Decreasing	Decreasing
MW228	Stable	Decreasing
MW301	N/A	Stable
MW304	N/A	No Trend
MW305	N/A	No Trend
СР	No Trend	No Trend