

The site visit process is a sample on a particular day of an installation's compliance with some of its licence conditions. Where non-compliance against a particular condition has not been reported, this should not be construed to mean that there is full compliance with that condition of the licence.

Instructions and actions arising from the visit shall be addressed, or where applicable noted, by the licensee in order to ensure compliance, to improve the environmental performance of the installation and to provide clarification on certain issues.

The licensee shall take the actions specified to close out the non-compliances and observations raised in this Site Visit Report.

The licensee may also be requested to provide a response to the Environmental Protection Agency (hereafter referred to as the Agency) in relation to the site visit report findings.

Licensee	
Name of Installation	Arran Chemical Company Limited
Licensee	Arran Chemical Company Limited
Licence Register No.	P0110-03
CRO Number	94943
Site Address	Units 1-3, Monksland Industrial Estate, Athlone, Roscommon, N37DN24
Site Visit Reference No.	SV26265

Report Detail	
Issue Date	17/10/2023
Prepared By	Pauline Gillard

Site Visit Detail			
Date Of Inspection	12/04/2023		
Time In	09:00	Time Out	17:30
EPA Inspector(s)			
Additional Visitors	Element		
Licensee Personnel and Role	Cyril Fury		

Summary

This site visit was conducted as part of the Agency's routine air emissions monitoring programme. The monitoring report is attached. The licensee was found to be in compliance with its Licence in relation to the areas inspected during this site visit.

Site Areas Inspected

See Report.

Documents Inspected

See Report.

EPA AIR EMISSIONS COMPLIANCE MONITORING EMISSIONS REPORT

(Prepared on behalf of the EPA by Element Ireland - EPA Contract No. OEE23-AEMP)

Element Ireland, Unit D8 North City Business Park, North Road, Finglas, Dublin 11 Your Element Ireland Contact: Dónal Ó Faogáin (+353 861 746 367) E: donal.ofaogain@element.com

Stack Emissions Testing Report Commissioned by

EPA Office of Environmental Enforcement

Installation Name & Address

Arran Chemical Company Limited Unit 1-3 Monksland Industrial Estate Athlone Co. Westmeath

Industrial Emissions Licence: P0110-03

Stack Reference

A-2-2 CAU Scrubber

Dates of the Monitoring Campaign

13h - 14th April 2023

Job Reference Number

P0110-03CAR23-01A

Report Written by	
Donal O Faogain	
Senior Team Leader	
MCERTS Level 2	
MM13 1259	
TF1 TF2 TF3 TF4	

Report Checked by	Report Approved by
Darragh Long	Neil Kelly
Team Leader	Team Leader
MCERTS Level 2	MCERTS Level 2
MM18 1494	MM16 1390
TE1 TE2 TE3 TE4	TE1 TE2 TE3 TE4

Report Date	
15th May 2023	
Version	
 Version 1	

Signature of Report Checker	Signature of Report Approver
Dong	Nail Kally

CONTENTS

TITLE PAGE

CONTENTS

EXECUTIVE SUMMARY

Monitoring Objectives	3
Monitoring Results	4
Monitoring Dates & Times	5
Process Details	6
Monitoring & Analytical Methods	7
Summary of Sampling Deviations	7
Sampling Location	8
Plant Photos / Sample Points	9

APPENDIX 1 - Monitoring Personnel & List of Equipment

APPENDIX 2 - Raw Data, Sampling Equations & Charts

Opinions and interpretations expressed herein are outside the scope of Element Ireland's ISO 17025 accreditation.

This test report shall not be reproduced, except in full, without the written approval of Element Ireland.

The testing performed fully meets the technical requirements in Irish EPA Guidance Note, AG2.

(Page 1 of 7)

MONITORING OBJECTIVES

Arran Chemical Company Limited, Athlone A-2-2 CAU Scrubber 13h - 14th April 2023

Overall Aim of the Monitoring Campaign

Element Ireland were commissioned by the EPA Office of Environmental Enforcement to carry out stack emissions testing at Arran Chemical Company Limited on the A-2-2 CAU Scrubber at Athlone.

The aim of the monitoring campaign was to perform testing, as requested by the customer, for a number of prescribed pollutants. There are no emission limits set for any of the pollutants at this time.

Special Requirements

There were no special requirements.

Target Parameters

Dioxins & Furans, Hydrogen Chloride, Sum of individual halogenated VOCs (hazard statements E341 and H351), Class I Organics, Class II Organics, Total VOCs (as Carbon), Oxides of Nitrogen (as NO₂)

(Page 2 of 7)

MONITORING RESULTS

Arran Chemical Company Limited, Athlone A-2-2 CAU Scrubber 13h - 14th April 2023

where MU = Measurement Uncertainty associated with the Result

	Concentration					Mass Emission				
Parameter		Result	MU	Limit		Units	Result	MU	Limit	
			+/-					+/-		
Hydrogen Chloride 1	mg/m³	< 0.06	0.003	30		g/hr	< 0.047	0.008	150	
Sum of individual halogenated VOCs (hazard statements E341 and H351)	mg/m³	< 1.70	0.34	2		g/hr	< 1.3	0.3	-	
Class I Organics	mg/m³	>0.000 and <2.461	0.49	20		kg/hr	>0.00 and <0.0019	0.0005	0.1	
Class II Organics	mg/m³	>0.33 and <2.37	0.57	100		kg/hr	>0.0 and <0.002	0.0005	2	
Total VOCs (as Carbon)	mg/m³	1.87	0.43	20		g/hr	1.5	0.4	-	
Total VOCs (as Carbon) 1Hr R1	mg/m³	2.34	0.44	30		g/hr	1.85	0.5	-	
Total VOCs (as Carbon) 1Hr R2	mg/m³	1.64	0.43	30		g/hr	1.29	0.4	-	
Water Vapour	% v/v	0.6	0.1							
Stack Gas Temperature	°C	9.2								
Stack Gas Velocity	m/s	2.7	0.44							
Volumetric Flow Rate (ACTUAL)	m³/hr	844	141	Limit						
Volumetric Flow Rate (REF)	m³/hr	790	132	1000						

NOTE: VOLUMETRIC FLOW RATE & VELOCITY DATA TAKEN FROM THE PRELIMINARY VELOCITY TRAVERSE.

¹ Reference Conditions (REF) are: 273K, 101.3kPa, dry gas.

(Page 3 of 7)

MONITORING DATE(S) & TIMES

Arran Chemical Company Limited, Athlone A-2-2 CAU Scrubber 13h - 14th April 2023

Parameter		Units	Concentration	Units	Mass Emission	Sampling	Sampling	Duration
						Date(s)	Times	mins
Hydrogen Chloride	R1	mg/m³	< 0.1	g/hr	< 0.0	14/04/2023	09:30 - 10:00	30
Sum of individual halogenated VOCs (hazard statements E341 and H351)	R1	mg/m³	< 1.70	g/hr	< 1.3	14/04/2023	09:00 - 09:30	30
Class I Organics	R1	mg/m³	>0.000 and <2.461	kg/hr	>0.00 and <0.0019	14/04/2023	09:00 - 09:30	30
Class II Organics	R1	mg/m³	>0.33 and <2.37	kg/hr	>0.0 and <0.002	14/04/2023	09:00 - 09:30	30
Total VOCs (as Carbon)	R1	mg/m³	2.35	g/hr	1.85	14/04/2023	08:30 - 09:00	30
Total VOCs (as Carbon)	R2	mg/m³	2.33	g/hr	1.84	14/04/2023	09:00 - 09:30	30
Total VOCs (as Carbon)	R3	mg/m³	0.94	g/hr	0.74	14/04/2023	09:30 - 10:00	30
Total VOCs (as Carbon) 1Hr Average	R1	mg/m³	2.34	g/hr	1.85	14/04/2023	08:30 - 09:30	60
Total VOCs (as Carbon) 1Hr Average	R2	mg/m³	1.64	g/hr	1.29	14/04/2023	09:00 - 10:00	60
Velocity Traverse	R1					14/04/2023	07:50 - 07:55	

All results are expressed at the respective reference conditions.

(Page 4 of 7)

PROCESS DETAILS

Arran Chemical Company Limited, Athlone A-2-2 CAU Scrubber 13h - 14th April 2023

Standard Operating Conditions

Parameter	Value
Process Status	Chemical Manufacturing
Capacity (of 100%) and Tonnes / Hour	1200 - 1800m3/hr
Continuous or Batch Process	Batch
Feedstock (if applicable)	Solvents
Abatement System	Thermal Oxidiser
Abatement System Running Status	On
Fuel	Natural Gas
Plume Appearance	None

(Page 5 of 7)

MONITORING & ANALYTICAL METHODS

Arran Chemical Company Limited, Athlone A-2-2 CAU Scrubber 13h - 14th April 2023

		Monitoring				Analysis				
Parameter	Standard	Technical	Sampling	Testing	Analytical	Analytical	Analysis	Analysis	Overall	LOD
		Procedure	Status	Lab	Procedure	Technique	Status	Lab	Status	(Average)
Hydrogen Chloride	EN 1911	CAT-TP-11	MCERTS	EET	CAT-AP-01	IC	MCERTS	EET	MCERTS	0.07 mg/m ³
Sum of individual halogenated VOCs (hazard statements E341 and H351)	CEN/TS 13649	CAT-TP-16	MCERTS	EET	GC/MS	GC/MS	None	MAR	None	1.697 mg/m³
Class I Organics	CEN/TS 13649	CAT-TP-16	MCERTS	EET	GC/MS	GC/MS	None	MAR	None	2.461 mg/m ³
Class II Organics	CEN/TS 13649	CAT-TP-16	MCERTS	EET	WI 3042 & 3048	GC/MS	None	MAR	None	2.121 mg/m ³
Water Vapour	EN 14790	CAT-TP-05	MCERTS	EET	CAT-TP-05	Gravimetric	MCERTS	EET	MCERTS	0.10 % v/v
Total VOCs (as Carbon)	EN 12619:2013	CAT-TP-20	MCERTS	EET	Flame Ionisation Detection by Sick 3006					0.32 mg/m ³
Velocity & Vol. Flow Rate	EN 16911-1 (MID)	CAT-TP-41	MCERTS	EET	Pitot ⁻	MCERTS	1.2 m/s			

ANALYSIS LABORATORIES

(with short name reference as appears in the table above)

Element (Stockport Lab - EET)	ISO 17025 Accreditation Number: 4279
Marchwood Scientific Services Ltd (MAR)	ISO 17025 Accreditation Number: 1668

SUMMARY OF SAMPLING DEVIATIONS

Parameter	Run	Deviation
All	All	There are no deviations associated with the sampling employed.

(Page 6 of 7)

SUITABILITY OF SAMPLING LOCATION

Duct Characteristics

Parameter	Units	Value
Туре	-	Circular
Depth	m	0.33
Width	m	-
Area	m²	0.09
Port Depth	cm	34
Orientation of Duct	-	Vertical
Number of Ports	-	2
Sample Port Size	-	4" BSP

Location of Sampling Platform

General Platform Information	Value	
Permanent / Temporary Platform	Permanent	
Inside / Outside	Outside	

Platform Details

Irish EPA Technical Guidance Note AG1 / EN 15259 Platform Requirements	
	1 ,,
Sufficient working area to manipulate probe and operate the measuring instruments	Yes
Platform has 2 levels of handrails (approx. 0.5m & 1.0m high)	Yes
Platform has vertical base boards (approx. 0.25m high)	Yes
Platform has chains / self closing gates at top of ladders	Yes
There are no obstructions present which hamper insertion of sampling equipment	Yes
Safe Access Available	Yes
Easy Access Available	Yes

Sampling Location / Platform Improvement Recommendations

The sampling location meets all the requirements specified in Irish EPA Guidance Note AG1 and EN 15259, and therefore there are no improvement recommendations.

EN 15259 Homogeneity Test Requirements

There is no requirement to perform a EN 15259 Homogeneity Test on this Stack.

Sampling Plane Validation Criteria (from EN 15259)

Criteria in EN 15259	Units	Traverse 1
Lowest Differential Pressure	Pa	6.5
Mean Velocity	m/s	2.74
Lowest Gas Velocity	m/s	2.74
Highest Gas Velocity	m/s	2.74
Ratio of Above	: 1	1.00
Maximum Angle of Swirl	٥	3.00
No Local Negative Flow	-	Yes

(Page 7 of 7)

PLANT PHOTOS

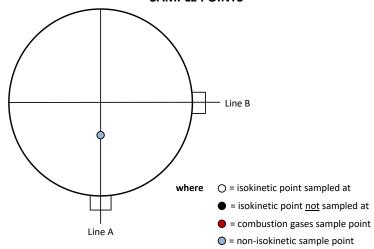

Photo 1

Photo 2

SAMPLE POINTS

APPENDICES

APPENDIX CONTENTS

APPENDIX 1 - Stack Emissions Monitoring Personnel, List of Equipment & Methods and Technical Procedures Used

APPENDIX 2 - Summaries, Calculations, Raw Data and Charts

STACK EMISSIONS MONITORING PERSONNEL

Position	Name	MCERTS Accreditation	MCERTS Number	Technical Endorsements
Team Leader	Donal O Faogain	MCERTS Level 2	MM13 1259	TE1 TE2 TE3 TE4
Technician	James O'Connor	MCERTS Trainee	MM22 1720	TE1

LIST OF EQUIPMENT

Extractive Sampling		
Equipment Type	Equipment I.D.	
Control Box DGM (1)	CAT 7.166	
Control Box DGM (2)	-	
Box Thermocouples (1)	-	
Box Thermocouples (2)	-	
Umbilical (1)	CAT 3.555	
Umbilical (2)	-	
Oven Box (1)	-	
Oven Box (2)	-	
Heated Probe (1)	CAT 5.143	
Heated Probe (2)	-	
Heated Probe (3)	-	
S-Pitot (1)	CAT 21p.92	
S-Pitot (2)	CAT 21p.189	
L-Pitot	-	
Site Balance	CAT 17.68	
500g / 1Kg Check Weights	CAT 17.68	
Last Impinger Arm	-	
Callipers	-	
Tubes Kit Thermocouple	-	

Instrumental Analysers		
Equipment Type	Equipment I.D.	
Horiba PG-350E	CAT 39.9	
SELECT Horiba Model (2)	-	
SELECT Servomex Model	-	
SELECT NOX Analyser/Convertor	-	
ABB AO2020-URAS26	-	
Testo 350 XL	-	
JCT JCC P1 Cooler	CAT 4.1122	
SELECT FTIR	-	
Gasmet Sampling System	-	
Sick 3006	CAT 8.15	
M&C PSS	CAT 12.83	
Mass Flow Controller (1) CAT 6.81		
Mass Flow Controller (2)	CAT 6.45	
Mass View (1)	CAT 25.37	
Mass View (2)	-	
SELECT Logger 1	-	
SELECT Logger 2	-	
Bioaerosols Temperature Logger	-	
Electronic Refrigerator	-	

Miscellaneous Items		
Equipment Type	Equipment I.D.	
	CAT 3.117	
Digital Manometer (1)	CAI 3.117	
Digital Manometer (2)	-	
Digital Temperature Meter	CAT 3.117	
Stopwatch	CAT 14.53	
Barometer	CAT 13.22	
Stack Thermocouple (1)	CAT 4.1490	
Stack Thermocouple (2)	-	
Stack Thermocouple (3)	-	
1m Heated Line (1)	-	
1m Heated Line (2)	-	
1m Heated Line (3)		
5m Heated Line (1)	-	
15m Heated Line (1)	-	
20m Heated Line (1)	-	
20m Heated Line (2)	CAT 20.1020	
Dual Channel Heater Controller CAT 20.10		
Single Channel Heater Controller -		
Laboratory Balance		
Tape Measure	CAT 16.94	

METHODS & TECHNICAL PROCEDURES USED

Parameter	Standard	Technical Procedure	
Hydrogen Chloride	EN 1911	CAT-TP-11	
Sum of individual halogenated VOCs (hazard statements E341 and H351)	CEN/TS 13649	CAT-TP-16	
Class I Organics	CEN/TS 13649	CAT-TP-16	
Class II Organics	CEN/TS 13649	CAT-TP-16	
Water Vapour	EN 14790	CAT-TP-05	
Total VOCs (as Carbon)	EN 12619:2013	CAT-TP-20	
Velocity & Vol. Flow Rate	EN 16911-1 (MID)	CAT-TP-41	

Page 13 of 127 Sample Date/s: 13h - 14th April 2023 Industrial Emissions Licence: P0110-03

PRELIMINARY STACK SURVEY: CALCULATIONS

General Stack Details

Stack Details (from Traverse)	Units	Value
Stack Diameter / Depth, D	m	0.33
Stack Width, W	m	-
Stack Area, A	m²	0.09
Average Stack Gas Temperature, T _a	°C	9.2
Average Stack Gas Pressure	Pa	6.5
Average Stack Static Pressure, P _{static}	kPa	0.072
Average Barometric Pressure, P _b	kPa	98.5
Average Pitot Tube Calibration Coefficient, C _p	-	0.84

Stack Gas Composition & Molecular Weights

Component	Conc	Conc	Conc	Volume	Molar	Density	Conc
	ppm	Dry	Wet	Fraction	Mass	kg/m³	kg/m³
		% v/v	% v/v	r	М	р	\mathbf{p}_i
CO ₂	-	0.06	0.06	0.0006	44.01	1.9635	0.00118
02	-	20.80	20.68	0.2080	32.00	1.4277	0.29696
N ₂	-	79.14	78.68	0.7914	28.01	1.2498	0.98913
Moisture (H₂O)	-	-	0.58	0.0058	18.02	0.8037	0.00464

Where: p = M / 22.41

 $p_i = r x p$

Calculation of Stack Gas Densities

Determinand	Units	Result
Dry Density (STP), P _{STD}	kg/m³	1.287
Wet Density (STP), P _{STW}	kg/m³	1.284
Dry Density (Actual), P Actual	kg/m³	1.212
Average Wet Density (Actual), P ActualW	kg/m³	1.209

Where:

 $P_{\rm STD}$ = sum of component concentrations, kg/m³ (not including water vapour)

 $P_{\rm STW}$ = sum of all wet concentrations / 100 x density, kg/m³ (including water vapour)

 $P_{Actual} = P_{STD} x (T_{STP} / (P_{STP})) x ((P_{static} + P_b) / T_a)$

 $P_{ActualW}$ (at each sampling point) = P_{STW} x (T_s / P_s) x (P_a / T_a)

Calculation of Stack Gas Volumetric Flowrate, Q

Duct gas flow conditions	Units	Actual	REF ¹
Temperature	°C	9.2	0.0
Total Pressure	kPa	98.6	101.3
Moisture	%	0.58	0.00

Gas Volumetric Flowrate (from Traverse)	Units	Result
Gas Volumetric Flowrate (Actual)	m³/hr	844
Gas Volumetric Flowrate (STP, Wet)	m³/hr	795
Gas Volumetric Flowrate (STP, Dry)	m³/hr	790
Gas Volumetric Flowrate REF ¹	m³/hr	790

PRELIMINARY STACK SURVEY: VELOCITY TRAVERSE TO EN 16911-1 (MID)

(1 of 1)

Parameter		Units	Value
Date of Survey		-	14/04/2023
Time of Survey		-	07:50 - 07:55
Atmospheric Press	sure	kPa	98.5
Average Stack Sta	tic Pressure	Pa	72
Result of Pitot Sta	gnation Test	-	Pass
Are Water Droplet	s Present?	-	Yes
Device Used	S-Type Pite	ot with KI	MO MP 210 (500Pa)

Parameter	Units	Value
Initial Pitot Leak Check	-	Pass
Final Pitot Leak Check	-	Pass
Orientation of Duct	-	Vertical
Pitot Tube, C _n	-	0.84
Number of Lines Available	-	1
Number of Lines Used	-	1

			:	Sampling Line A	1	
Traverse Point	Depth m	ΔP Pa	Temp °C	Wet Density kg/m³	Velocity m/s	Swirl °
STATIC (Ur	its: Pa)	72.0				
Mean		6.5	9.2	1.209	2.74	
1	0.17	6.5	9.2	1.209	2.74	3.0

PRELIMINARY STACK SURVEY: VELOCITY TRAVERSE TO EN 16911-1 (MID) - MEASUREMENT UNCERTAINTY (1 of 1)

Performance characteristics (Uncertainty Components)	Uncertainty	Value	Units
Standard Uncertainty on the coefficient of the Pitot Tube	u(k)	0.005	-
Standard Uncertainty associated with the mean local dynamic pressures	u(<u>∆pi</u>)	1.046	Pa
- Resolution	u(res)	0.00087	
- Calibration	u(cal)	0.004	
- Drift	u(drift)	0.083	
- Lack of Fit	u(fit)	0.005	
- Overall corrections to dynamic measurements	u(Cf)	0.094	
Standard uncertainty associated with the molar mass of the gas	u(M)	0.00003	-
- φO ₂ , w	-	20.680	
- φCO ₂ ,w	-	0.060	
- Oxygen, dry	u(φO₂,d)	0.637	
- Carbon Dioxide, dry	u(φCO₂,d)	0.002	
- Water Vapour	u(φH₂O)	0.029	
- Oxygen, wet	u(φO₂,w)	0.633	
- Carbon Dioxide, wet	u(φCO₂,w)	0.002	
Standard uncertainty associated with the stack temperature	u(Tc)	1.440	К
Standard uncertainty associated with the absolute pressure in the duct	u(pc)	175.695	Pa
- Atmospheric Pressure	u(patm)	175.692	
- Static Pressure	u(<u>pstat</u>)	1.046	
Standard uncertainty associated with the density in the duct	u(ρ)	0.00653	-
Standard uncertainty associated with the local velocities	u(vi)	0.225	Pa
Standard uncertainty associated with the mean velocity	u(<u>v</u>)	0.225	m/s
Standard uncertainty associated with the mean velocity (95% Confidence)	Uc(v)	0.441	m/s
Standard uncertainty associated with the mean velocity (95% Confidence), relative	Uc,rel(v)	16.07	%
Standard uncertainty associated with the volume flow rate (95% Confidence)	Uc(qV,w)	141.0	m³/h
- u²(a)/a²	-	0.00053	
- u²(qV,w)/q²V,w	-	0.00725	
- u²(qV,w)	-	5173	
- u(qV,w)	-	71.9	
Standard uncertainty associated with the volume flow rate (95% Confidence), relative	Uc,rel(qV,w)	16.69	%

HYDROGEN CHLORIDE: RESULTS SUMMARY

Arran Chemical Company Limited, Athlone A-2-2 CAU Scrubber

Sample Runs

Parameter	Units	Run 1
Concentration	mg/m³	< 0.06
Uncertainty	±mg/m³	0.00
Mass Emission	g/hr	< 0.0
Uncertainty	±g/hr	0.0

NOTE: Where the maximum Blank concentration is higher than the Sample concentration, the Blank concentration has been reported.

Parameter	Units	Run 1	
Vapour	% v/v	0.58	
ertainty	±% v/v	0.06	

Blank Runs

General Sampling Information

Parameter	Value		
Standard	EN 1911		
Technical Procedure	CAT-TP-11		
Name of Analytical Laboratory	EET		
Analytical Laboratory's Procedure	CAT-AP-01		
ISO 17025 Accredited Analysis?	MCERTS		
Date of Sample Analysis	28/04/2023		
Probe Material	Titanium		
Filter Housing Material	Titanium		
Impinger Material	Polyethylene		
Absorption Solution	HPLC Grade Water		
Positioning of Filter	In Stack		
Filter Size and Material	47mm Quartz Fibre		
Number of Sampling Lines Used	1/1		
Number of Sampling Points Used	1/1		
Sample Point I.D.'s	A1		

FORMAT: Number Used / Number Required
FORMAT: Number Used / Number Required

Reference Conditions

Reference Conditions are: 273K, 101.3kPa, dry gas.

HYDROGEN CHLORIDE: SAMPLING DETAILS

Sample Runs

Parameter	Units	Run 1
	· I	
Sampling Times	-	09:30 - 10:00
Sampling Dates	-	14/04/2023
Sampling Device	-	MFC / MV
Duration	mins	30
Volume Sampled (STP, Dry)	m³	0.2790
Volume Sampled (STP, Wet)	m³	0.2806
Volume Sampled (REF)	m³	0.2790
Sample Flow Rate	l/min	9.29
Laboratory Result for Front Impingers	μg/ml	< 0.00
Laboratory Result for Back Impinger	μg/ml	< 0.10
Volume in Front Impingers	ml	260.8
Volume in Back Impinger	ml	129.2
Mass in Front Impingers	μg	< 0.0
Mass in Back Impinger	μg	< 12.9
Total Mass Collected	μg	< 12.9
Calculated Concentration	mg/m³	< 0.05
Liquid Trap Start Mass	g	1230.9
Liquid Trap End Mass	g	1229.7
Silica Trap Start Mass	g	1493.4
Silica Trap End Mass	g	1495.9
Total Mass Of Water Vapour	g	1.3
Calculated Water Vapour	% v/v	0.58

Where: MFC stands for Mass Flow Controller, MV stands for Mass View Flowmeter

Blank Runs

Parameter	Units	Blank 1
Blank Dates	-	13/04/2023
Average Volume Sampled (REF)	m³	0.2790
Laboratory Result for Impingers	μg/ml	< 0.05
Volume in Impingers	ml	333.7
Total Mass Collected	μg	< 16.7
Calculated Concentration	mg/m³	< 0.06

HYDROGEN CHLORIDE: QUALITY ASSURANCE

Sample Runs

Leak Test Results	Units	Run 1
Mean Sampling Rate	l/min	9.3
Pre-Sampling Leak Rate	l/min	0.05
Post-Sampling Leak Rate	l/min	0.05
Allowable Leak Rate	l/min	0.19
Leak Test Acceptable	-	Yes
Absorption Efficiency	Units	Run 1

Absorption Efficiency	Units	Run 1
Al	0/	400.0
Absorption Efficiency	%	100.0
Allowable Absorption Efficiency	%	N/A 1
Absorption Efficiency Acceptable	-	Yes 1

¹ The concentration in the last absorber was less than 5 times the analytical detection limit.

MU (Concurrent Water Vapour)	Units	Run 1
Measurement Uncertainty (MU)	%	9.9
Allowable MU	%	20.0
MU Acceptable	%	Yes

Silica Gel (Concurrent Water Vapour)	Units	Run 1
Less than 50% Faded	%	Yes

Blank Runs

Leak Test Results	Units	Blank 1
Expected Sampling Rate	l/min	9.5
Pre-Sampling Leak Rate	l/min	0.05
Post-Sampling Leak Rate	l/min	0.11
Allowable Leak Rate	l/min	0.19
Leak Test Acceptable	-	Yes

Validity of Blank vs ELV	Units	Blank 1
Allowable Blank	mg/m³	3.0
Blank Acceptable	-	Yes

Method Deviations

Nature of Deviation		Run Number
(x = deviation applies to the associated run, wx = deviation also applies to the concurrent water vapour run)	1	
There are no deviations associated with the sampling employed.	wx	

HYDROGEN CHLORIDE: MEASUREMENT UNCERTAINTY CALCULATIONS

			Value				Standa
Measured Quantities	Symbol	Run 1		Sym	loc	Units	Run 1
Sampled Volume (STP)	V _m	0.2790		uV	m	m³	0.0056
Leak	L	0.54		u		%	-
Laboratory Result	L _r	1.05		ul	r	%	-

		Unce	ertainty as a Percentage	
Measured Quantities	Units	Run 1		Requirement of Standard
Sampled Volume (STP)	%	2.00]	≤2%
Leak	%	0.54		≤2%
Laboratory Result	%	1.05		No Requirement

		Unc	ertainty i	n Measurement Units		Sensitivity Coefficient
Measured Quantities	Symbol	Units	Run 1		Run 1	
Sampled Volume (STP)	V _m	m³	0.2790		0.21	
Leak	L	mg/m³	0.000		1.00	
Laboratory Result	L _r	mg/m³	0.001		1.00	

		U
Measured Quantities	Units	Run 1
Sampled Volume (STP)	mg/m³	0.001
Leak	mg/m³	0.0002
Laboratory Result	mg/m³	0.0006

	(Oxygen C
Measured Quantities	Units	Run 1
O ₂ Correction Factor	-	N/A
Stack Gas O₂ Content	% v/v	N/A
MU for O₂ Correction	-	N/A
Overall MU For O ₂ Measurement	%	N/A

Parameter	Units	Run 1
Combined uncertainty	mg/m³	0.0014
Expanded uncertainty (95% confidence), without Oxygen Correction	mg/m³	0.0027
Expanded uncertainty (95% confidence), with Oxygen Correction	mg/m³	N/A
Expanded uncertainty (95% confidence), estimated with Method Deviations	mg/m³	0.0027
Reported Uncertainty	mg/m³	0.0027
Expanded uncertainty (95% confidence), without Oxygen Correction	%	4.5
Expanded uncertainty (95% confidence), with Oxygen Correction	%	N/A
Expanded uncertainty (95% confidence), estimated with Method Deviations	%	4.5
Reported Uncertainty	%	4.5

Page 20 of 127 Sample Date/s: 13h - 14th April 2023 Industrial Emissions Licence: P0110-03

SUM OF INDIVIDUAL HALOGENATED VOCS (HAZARD STATEMENTS E341 AND H351): RESULTS SUMMARY

Arran Chemical Company Limited, Athlone
A-2-2 CAU Scrubber

Sample Runs

Parameter	Units	Run 1			Mean
Dichloromethane	mg/m³	< 1.70			< 1.70
Total	mg/m³	< 1.70			< 1.70

General Sampling Information

Parameter	Value				
	0511/70 40640				
Standard	CEN/TS 13649				
Technical Procedure	CAT-TP-16				
No C.A I. M I. I. I. I					
Name of Analytical Laboratory	MAR				
Analytical Laboratory's Procedure	GC/MS				
ISO 17025 Accredited Analysis?	See Executive Summary				
Date of Sample Analysis	15/05/2023				
Probe Material	Stainless Steel				
Sample Tube Type	Coconut Shell Charcoal				
Dynamic Dilution Employed	No				
Number of Sampling Lines Used	1/1				
Number of Sampling Points Used	1/1				
Sample Point I.D.'s	B1				

FORMAT: Number Used / Number Required

FORMAT: Number Used / Number Required

Reference Conditions

Reference Conditions are: 273K, 101.3kPa, dry gas.

SUM OF INDIVIDUAL HALOGENATED VOCS (HAZARD STATEMENTS E341 AND H351): SAMPLING DETAILS

RUN 1

Parameter	Units	Value
Sampling Times	-	09:00 - 09:30
Sampling Dates	-	14/04/2023
Sampling Device	-	MV
Duration	mins	30
N₂ to Stack Gas Dilution Ratio	: 1	0
Volume Sampled (REF)	m³	0.0118

Where: MV stands for Mass View (Mass Flow Controller Technology)

Parameter	Lab Result (Front) μg	Lab Result (Back) µg	Lab Result (Total) µg	LOD (Front) µg	LOD (Back) µg	LOD (Total) µg	Concentration mg/m³	Reported Concentration (Blank Reviewed)	Reported LOD mg/m³	Adsorption Efficiency %
Dichloromethane	< 10.0	< 10.0	20.0	10.0	10.0	20.0	< 1.697	< 1.697	1.697	100.0
Total			20.0			20.0	< 1.697	< 1.697	1.697	-

Reference Conditions are: 273K, 101.3kPa, dry gas.

Tube Lot Number and Unique ID: Lot:2000 0136644671

AG2 Reporting Format	ELV (mg/m³)	Results (mg/m³)	Breakdown of Results	Mass Emission (kg/h)
Sum or marviauar				
halogenated VOCs (hazard	2	> 0 and < 1.7	> (sum of) and < (sum of 1)	>0.00000 and <0.00134
-1-1-1-1-1-1-1-1-1				

SUM OF INDIVIDUAL HALOGENATED VOCS (HAZARD STATEMENTS E341 AND H351): SAMPLING DETAILS

BLANK 1

Parameter	Units	Value
Sampling Dates	-	14/04/2023
Sampling Device	-	MV
Average Volume Sampled (REF)	m³	0.0118

Where: MV stands for Mass View (Mass Flow Controller Technology)

Parameter	Lab Result (Front) µg	Lab Result (Back) µg	Lab Result (Total) µg	Concentration mg/m³
Dichloromethane	< 10.0	< 10.0	20.0	< 1.697
TOTAL			20.0	< 1.697

Reference Conditions are: 273K, 101.3kPa, dry gas.

Tube Lot Number and Unique ID: Lot:2000, 0136644649

Page 23 of 127 Sample Date/s: 13h - 14th April 2023 Industrial Emissions Licence: P0110-03

SUM OF INDIVIDUAL HALOGENATED VOCS (HAZARD STATEMENTS E341 AND H351) : QUALITY ASSURANCE (PAGE 1 OF 2)

Sample Runs

Leak Test Results	Unite	Dum 1
Leak Test Results	Units	Run 1
Mean Sampling Rate	l/min	0.4
Pre-Sampling Leak Rate	l/min	0.00
Post-Sampling Leak Rate	l/min	0.00
Allowable Leak Rate	l/min	0.02
Leak Test Acceptable	-	Yes
Adsorption Efficiency	Units	Run 1
Dichloromethane	%	100.0
Allowable Adsorption Efficiency	%	95.0
Adsorption Efficiency Acceptable	-	Yes
Temperature at Sample Tubes	Units	Run 1
Temperature	°C	32
Allowable Temperature	°C	40
Temperature Acceptable	-	Yes
Test Conditions	Units	Run 1
Ambient Temperature Recorded?	-	Yes

SUM OF INDIVIDUAL HALOGENATED VOCS (HAZARD STATEMENTS E341 AND H351) : QUALITY ASSURANCE (PAGE 2 OF 2)

Blank Runs

Leak Test Results	Units	Bla	nk 1
Expected Sampling Rate	l/min	0.4	
Sampling Leak Rate	l/min	0.	01
Allowable Leak Rate	l/min	0.02	
Leak Test Acceptable	-	Yes	
Validity of Blank vs ELV	Units	Blank 1	Allowed
Allowable for Dichloromethane	mg/m³	1.7	0.2
Allowable for TOTAL	mg/m³	1.7	0.2

Method Deviations

Nature of Deviation		Run Number
(x = deviation applies to the associated run)	1	
There are no deviations associated with the sampling employed.	х	

F INDIVIDUAL HALOGENATED VOCS (HAZARD STATEMENTS E341 AND H351): MEASUREMENT UNCERTAINTY CALCULA

			Value	Standard uncertainty			
Measured Quantities	Symbol	Run 1		Symbo	Units	Run 1	
Sampled Volume (STP)	V _m	0.0118		uV _m	m³	0.0002	
Leak	L	0.00		uL	%	-	
Laboratory Result	L _r	10.00		uL _r	%	-	

		Unce	ertainty as a Percentage	
Measured Quantities	Units	Run 1		Requirement of Standard
Sampled Volume (STP)	%	2.00]	≤2%
Leak	%	0.00		≤5%
Laboratory Result	%	10.00		No Requirement

		Unc	ertainty i	n Measurement Units		Sensitivity Coefficient
Measured Quantities	Symbol	Units	Run 1		Run 1	
Sampled Volume (STP)	V _m	m³	0.0118		143.93	
Leak	L	mg/m³	0.000		1.00	
Laboratory Result	L _r	mg/m³	0.170		1.00	

		Uı			
Measured Quantities	Units	Run 1			
Sampled Volume (STP)	mg/m³	0.034			
Leak	mg/m³	0.0000			
Laboratory Result	mg/m³	0.1697			

	Oxygen Correction Part of MU Budget				
Measured Quantities	Units	Run 1			
O ₂ Correction Factor	-	N/A			
Stack Gas O₂ Content	% v/v	N/A			
MU for O₂ Correction	-	N/A			
Overall MU For O ₂ Measurement	%	N/A			

Parameter	Units	Run 1
Combined uncertainty	mg/m³	0.173
Expanded uncertainty (95% confidence), without Oxygen Correction	mg/m³	0.339
Expanded uncertainty (95% confidence), with Oxygen Correction	mg/m³	N/A
Expanded uncertainty (95% confidence), estimated with Method Deviations	mg/m³	0.339
Reported Uncertainty	mg/m³	0.339
Expanded uncertainty (95% confidence), without Oxygen Correction	%	20.0
Expanded uncertainty (95% confidence), with Oxygen Correction	%	N/A
Expanded uncertainty (95% confidence), estimated with Method Deviations	%	20.0
Reported Uncertainty	%	20.0

 $NOTE: Uncertainties\ reported\ in\ mg/m^3\ are\ based\ upon\ the\ summation\ of\ all\ Speciated\ VOCs\ Measured.$

CLASS I ORGANICS: RESULTS SUMMARY

Arran Chemical Company Limited, Athlone
A-2-2 CAU Scrubber

Sample Runs

Parameter	Units	Run 1			Mear
Benzene	mg/m³	< 0.08]		< 0.08
Carbon Tetrachloride	mg/m³	< 0.17			< 0.17
Chloroform	mg/m³	< 0.17			< 0.17
Dichloromethane	mg/m³	< 1.70			< 1.70
Tetrachloroethylene	mg/m³	< 0.17	1		< 0.17
Trichloroethylene	mg/m³	< 0.17	1		< 0.17
Total	mg/m³	< 2.46			< 2.46

General Sampling Information

Parameter	Value					
Standard	CEN/TS 13649					
Technical Procedure	CAT-TP-16					
Name of Analytical Laboratory	MAR					
Analytical Laboratory's Procedure	GC/MS					
ISO 17025 Accredited Analysis?	See Executive Summary					
Date of Sample Analysis	15/05/2023					
Probe Material	Stainless Steel					
Sample Tube Type	Silica Gel					
Dynamic Dilution Employed	No					
Number of Sampling Lines Used	1/1					
Number of Sampling Points Used	1/1					
Sample Point I.D.'s	A2					

FORMAT: Number Used / Number Required
FORMAT: Number Used / Number Required

Reference Conditions

Reference Conditions are: 273K, 101.3kPa, dry gas.

CLASS I ORGANICS: SAMPLING DETAILS

RUN 1

Parameter	Units	Value
Sampling Times	-	09:00 - 09:30
Sampling Dates	-	14/04/2023
Sampling Device	-	MV
Duration	mins	30
N₂ to Stack Gas Dilution Ratio	: 1	0
Volume Sampled (REF)	m³	0.0118

Where: MV stands for Mass View (Mass Flow Controller Technology)

Parameter	Lab Result (Front)	Lab Result (Back)	Lab Result (Total)	LOD (Front)	LOD (Back)	LOD (Total)	Concentration mg/m³	Reported Concentration	Reported LOD	Adsorption Efficiency
	μg	μg	μg	μg	μg	μg		(Blank Reviewed)	mg/m³	%
Benzene	< 0.5	< 0.5	1.0	0.5	0.5	1.0	< 0.085	< 0.085	0.085	100.0
Carbon Tetrachloride	< 1.0	< 1.0	2.0	1.0	1.0	2.0	< 0.170	< 0.170	0.170	100.0
Chloroform	< 1.0	< 1.0	2.0	1.0	1.0	2.0	< 0.170	< 0.170	0.170	100.0
Dichloromethane	< 10.0	< 10.0	20.0	10.0	10.0	20.0	< 1.697	< 1.697	1.697	100.0
Tetrachloroethylene	< 1.0	< 1.0	2.0	1.0	1.0	2.0	< 0.170	< 0.170	0.170	100.0
Trichloroethylene	< 1.0	< 1.0	2.0	1.0	1.0	2.0	< 0.170	< 0.170	0.170	100.0
Total			29.0			29.0	< 2.461	< 2.461	2.461	-

Reference Conditions are: 273K, 101.3kPa, dry gas.

Tube Lot Number and Unique ID: lot 13902, 0189708330

AG2 Reporting Format	ELV (mg/m³)	Results (mg/m³)	Breakdown of Results	Mass Emission (kg/h)
Class I Organics	20	> 0 and < 2.46	> (sum of) and < (sum of 1+2+3+4+5+6)	>0.00 and <0.0019

CLASS I ORGANICS: SAMPLING DETAILS

BLANK 1

Parameter	Units	Value
Sampling Dates	-	14/04/2023
Sampling Device	-	MV
Average Volume Sampled (REF)	m³	0.0118

Where: MV stands for Mass View (Mass Flow Controller Technology)

Parameter	Lab Result (Front) μg	Lab Result (Back) µg	Lab Result (Total) µg	Concentration mg/m³
Benzene	< 0.5	< 0.5	1.0	< 0.085
Carbon Tetrachloride	< 1.0	< 1.0	2.0	< 0.170
Chloroform	< 1.0	< 1.0	2.0	< 0.170
Dichloromethane	< 10.0	< 10.0	20.0	< 1.697
Tetrachloroethylene	< 1.0	< 1.0	2.0	< 0.170
Trichloroethylene	< 1.0	< 1.0	2.0	< 0.170
TOTAL			29.0	< 2.461

Reference Conditions are: 273K, 101.3kPa, dry gas.

Tube Lot Number and Unique ID: lot 13902, 0189708328

Page 29 of 127 Sample Date/s: 13h - 14th April 2023 Industrial Emissions Licence: P0110-03

CLASS I ORGANICS : QUALITY ASSURANCE

(PAGE 1 OF 2)

Sample Runs

Ambient Temperature Recorded?

Leak Test Results	Units	Run 1
Mean Sampling Rate	l/min	0.4
Pre-Sampling Leak Rate	l/min	0.00
Post-Sampling Leak Rate	l/min	0.00
Allowable Leak Rate	l/min	0.02
Leak Test Acceptable	-	Yes
Adsorption Efficiency	Units	Run 1
Benzene	%	100.0
Carbon Tetrachloride	%	100.0
Chloroform	%	100.0
Dichloromethane	%	100.0
Tetrachloroethylene	%	100.0
Trichloroethylene	%	100.0
Allowable Adsorption Efficiency	%	95.0
Adsorption Efficiency Acceptable	-	Yes
Tomporature at Sample Tubes	Units	Run 1
Temperature at Sample Tubes	Units	Run 1
Temperature	°C	28
Allowable Temperature	°C	40
Temperature Acceptable	-	Yes

Yes

CLASS I ORGANICS : QUALITY ASSURANCE

(PAGE 2 OF 2)

Blank Runs

Leak Test Results	Units	Bla	nk 1	
Expected Sampling Rate	I/min	0	.4	
Sampling Leak Rate	l/min	0.	00	
Allowable Leak Rate	l/min	0.	0.02	
Leak Test Acceptable	-	Υ	es	
Validity of Blank vs ELV	Units	Blank 1	Allowed	
Allowable for Benzene	mg/m³	0.1	N/A	
Allowable for Carbon Tetrachloride	mg/m³	0.2	N/A	
Allowable for Chloroform	mg/m³	0.2	N/A	
Allowable for Dichloromethane	mg/m³	1.7	N/A	
Allowable for Tetrachloroethylene	mg/m³	0.2	N/A	
Allowable for Trichloroethylene	mg/m³	0.2	N/A	

Method Deviations

Nature of Deviation		Run Number
(x = deviation applies to the associated run)	1	
There are no deviations associated with the sampling employed.	x	

CLASS I ORGANICS: MEASUREMENT UNCERTAINTY CALCULATIONS

			Value			Stand	ard uncertaint
Measured Quantities	Symbol	Run 1		Symbo	Units	Run 1	
Sampled Volume (STP)	V _m	0.0118		uV _m	m³	0.0002	
Leak	L	0.00		uL	%	-	
Laboratory Result	L _r	10.00		uL _r	%	-	

		Unce	ertainty as a Percentage	
Measured Quantities	Units	Run 1		Requirement of Standard
Sampled Volume (STP)	%	2.00]	≤2%
Leak	%	0.00		≤5%
Laboratory Result	%	10.00		No Requirement

		Unc	ertainty	n Measurement Units		Sensitivity Coefficient
Measured Quantities	Symbol	Units	Run 1		Run 1	
Sampled Volume (STP)	V _m	m³	0.0118		208.79	
Leak	L	mg/m³	0.000		1.00	
Laboratory Result	L _r	mg/m³	0.246		1.00	

		U	ncertainty in Result
Measured Quantities	Units	Run 1	
Sampled Volume (STP)	mg/m³	0.049	
Leak	mg/m³	0.0000	
Laboratory Result	mg/m³	0.2461	

	(Oxygen C
Measured Quantities	Units	Run 1
O ₂ Correction Factor	-	N/A
Stack Gas O₂ Content	% v/v	N/A
MU for O₂ Correction	-	N/A
Overall MU For O ₂ Measurement	%	N/A

Parameter	Units	Run 1
Combined uncertainty	mg/m³	0.251
Expanded uncertainty (95% confidence), without Oxygen Correction	mg/m³	0.492
Expanded uncertainty (95% confidence), with Oxygen Correction	mg/m³	N/A
Expanded uncertainty (95% confidence), estimated with Method Deviations	mg/m³	0.492
Reported Uncertainty	mg/m³	0.492
Expanded uncertainty (95% confidence), without Oxygen Correction	%	20.0
Expanded uncertainty (95% confidence), with Oxygen Correction	%	N/A
Expanded uncertainty (95% confidence), estimated with Method Deviations	%	20.0
Reported Uncertainty	%	20.0

 $NOTE: Uncertainties\ reported\ in\ mg/m^3\ are\ based\ upon\ the\ summation\ of\ all\ Speciated\ VOCs\ Measured.$

Page 32 of 127 Sample Date/s: 13h - 14th April 2023 Industrial Emissions Licence: P0110-03

CLASS II ORGANICS: RESULTS SUMMARY

Arran Chemical Company Limited, Athlone
A-2-2 CAU Scrubber

Sample Runs

Parameter	Units	Run 1			Mean
2-Propanol	mg/m³	< 0.34			< 0.34
Acetone	mg/m³	0.33			0.33
Cyclohexane	mg/m³	< 0.17			< 0.17
Cyclohexanone	mg/m³	< 0.17			< 0.17
Ethanol	mg/m³	< 0.34			< 0.34
Ethyl Acetate	mg/m³	< 0.08			< 0.08
Heptane	mg/m³	< 0.17			< 0.17
Hexane	mg/m³	< 0.08			< 0.08
M + P – Xylene	mg/m³	< 0.17			< 0.17
Methyl Ethyl Ketone	mg/m³	< 0.08			< 0.08
Methyl-iso-butyl	mg/m³	< 0.08			< 0.08
o-Xylene	mg/m³	< 0.08			< 0.08
Tetrahydrofuran	mg/m³	< 0.17			< 0.17
Toluene	mg/m³	< 0.08			< 0.08
Total	mg/m³	< 2.37			< 2.37

General Sampling Information

Parameter	Value
Standard	CEN/TS 13649
Technical Procedure	CAT-TP-16
Name of Analytical Laboratory	MAR
Analytical Laboratory's Procedure	WI 3042 & 3048
ISO 17025 Accredited Analysis?	See Executive Summary
Date of Sample Analysis	15/05/2023
Probe Material	Stainless Steel
Sample Tube Type	Coconut Shell Charcoal
Dynamic Dilution Employed	No
Number of Sampling Lines Used	1/1
Number of Sampling Points Used	1/1
Sample Point I.D.'s	B1

FORMAT: Number Used / Number Required FORMAT: Number Used / Number Required

Reference Conditions

Reference Conditions are: 273K, 101.3kPa, dry gas.

CLASS II ORGANICS: SAMPLING DETAILS

RUN 1

Parameter	Units	Value
Sampling Times	-	09:00 - 09:30
Sampling Dates	-	14/04/2023
Sampling Device	-	MV
Duration	mins	30
N₂ to Stack Gas Dilution Ratio	: 1	0
Volume Sampled (REF)	m³	0.0118

Where: MV stands for Mass View (Mass Flow Controller Technology)

Parameter	Lab Result	Lab Result	Lab Result	LOD	LOD	LOD	Concentration	Reported	Reported	Adsorption
	(Front)	(Back)	(Total)	(Front)	(Back)	(Total)	mg/m³	Concentration	LOD	Efficiency
	μg	μg	μg	μg	μg	μg		(Blank Reviewed)	mg/m³	%
2-Propanol	< 2.0	< 2.0	4.0	2.0	2.0	4.0	< 0.339	< 0.339	0.339	100.0
Acetone	0.9	3.0	3.9	0.5	0.5	1.0	0.331	0.331	0.085	23.1
Cyclohexane	< 1.0	< 1.0	2.0	1.0	1.0	2.0	< 0.170	< 0.170	0.170	100.0
Cyclohexanone	< 1.0	< 1.0	2.0	1.0	1.0	2.0	< 0.170	< 0.170	0.170	100.0
Ethanol	< 2.0	< 2.0	4.0	2.0	2.0	4.0	< 0.339	< 0.339	0.339	100.0
Ethyl Acetate	< 0.5	< 0.5	1.0	0.5	0.5	1.0	< 0.085	< 0.085	0.085	100.0
Heptane	< 1.0	< 1.0	2.0	1.0	1.0	2.0	< 0.170	< 0.170	0.170	100.0
Hexane	< 0.5	< 0.5	1.0	0.5	0.5	1.0	< 0.085	< 0.085	0.085	100.0
M + P – Xylene	< 1.0	< 1.0	2.0	1.0	1.0	2.0	< 0.170	< 0.170	0.170	100.0
Methyl Ethyl Ketone	< 0.5	< 0.5	1.0	0.5	0.5	1.0	< 0.085	< 0.085	0.085	100.0
Methyl-iso-butyl Ketone	< 0.5	< 0.5	1.0	0.5	0.5	1.0	< 0.085	< 0.085	0.085	100.0
o-Xylene	< 0.5	< 0.5	1.0	0.5	0.5	1.0	< 0.085	< 0.085	0.085	100.0
Tetrahydrofuran	< 1.0	< 1.0	2.0	1.0	1.0	2.0	< 0.170	< 0.170	0.170	100.0
Toluene	< 0.5	< 0.5	1.0	0.5	0.5	1.0	< 0.085	< 0.085	0.085	100.0
Total			27.9			25.0	< 2.367	< 2.367	2.121	-

Reference Conditions are: 273K, 101.3kPa, dry gas.

Tube Lot Number and Unique ID: lot 2000, 0136644652

AG2 Reporting Format	ELV (mg/m³)	Results (mg/m³)	Breakdown of Results	Mass Emission (Kg/h)
Class II Organics	100	> 0.33 and < 2.37	> (sum of 2) and < (sum of 1+2+3+4+5+6+7+8+9+10+11+12+13+14)	>0.0 and <0.002

CLASS II ORGANICS: SAMPLING DETAILS

BLANK 1

Parameter	Units	Value
Sampling Dates	-	14/04/2023
Sampling Device	-	MV
Average Volume Sampled (REF)	m³	0.0118

Where: MV stands for Mass View (Mass Flow Controller Technology)

Parameter	Lab Result (Front)	Lab Result (Back)	Lab Result (Total)	Concentration mg/m³
	μg	μg	μg	
2-Propanol	< 2.0	< 2.0	4.0	< 0.339
Acetone	3.1	< 0.5	3.6	0.305
Cyclohexane	< 1.0	< 1.0	2.0	< 0.170
Cyclohexanone	< 1.0	< 1.0	2.0	< 0.170
Ethanol	< 2.0	< 2.0	4.0	< 0.339
Ethyl Acetate	< 0.5	< 0.5	1.0	< 0.085
Heptane	< 1.0	< 1.0	2.0	< 0.170
Hexane	< 0.5	< 0.5	1.0	< 0.085
M + P – Xylene	< 1.0	< 1.0	2.0	< 0.170
Methyl Ethyl Ketone	< 0.5	< 0.5	1.0	< 0.085
Methyl-iso-butyl Ketone	< 0.5	< 0.5	1.0	< 0.085
o-Xylene	< 0.5	< 0.5	1.0	< 0.085
Tetrahydrofuran	< 1.0	< 1.0	2.0	< 0.170
Toluene	< 0.5	< 0.5	1.0	< 0.085
TOTAL			27.6	< 2.341

Reference Conditions are: 273K, 101.3kPa, dry gas.

Tube Lot Number and Unique ID: Lot:2000, 0136631835

Page 35 of 127 Sample Date/s: 13h - 14th April 2023 Industrial Emissions Licence: P0110-03

CLASS II ORGANICS: QUALITY ASSURANCE

(PAGE 1 OF 2)

Sample Runs

Leak Test Results	Units	Run 1
Mean Sampling Rate	l/min	0.4
Pre-Sampling Leak Rate	l/min	0.00
Post-Sampling Leak Rate	l/min	0.00
Allowable Leak Rate	l/min	0.02
Leak Test Acceptable	-	Yes
Adsorption Efficiency	Units	Run 1
2-Propanol	%	100.0
Acetone	%	23.1
Cyclohexane	%	100.0
Cyclohexanone	%	100.0
Ethanol	%	100.0
Ethyl Acetate	%	100.0
Heptane	%	100.0
Hexane	%	100.0
M + P – Xylene	%	100.0
Methyl Ethyl Ketone	%	100.0
Methyl-iso-butyl Ketone	%	100.0
o-Xylene	%	100.0
Tetrahydrofuran	%	100.0
Toluene	%	100.0
Allowable Adsorption Efficiency	%	95.0
Adsorption Efficiency Acceptable	-	No
Temperature at Sample Tubes	Units	Run 1
Temperature	°C	32
Allowable Temperature	°C	40
Temperature Acceptable	-	Yes
Test Conditions	Units	Run 1
Ambient Temperature Recorded?	-	Yes

CLASS II ORGANICS: QUALITY ASSURANCE

(PAGE 2 OF 2)

Blank Runs

Leak Test Results	Units	Blank 1
Expected Sampling Rate	l/min	0.4
Sampling Leak Rate	l/min	0.01
Allowable Leak Rate	l/min	0.02
Leak Test Acceptable	-	Yes
Validity of Blank vs ELV	Units	Blank 1 Allowed

Validity of Blank vs ELV	Units	Blank 1	Allowed
All Line Co. 2 Donor Line	/ . 3	0.0	21/2
Allowable for 2-Propanol	mg/m³	0.3	N/A
Allowable for Acetone	mg/m³	0.3	N/A
Allowable for Cyclohexane	mg/m³	0.2	N/A
Allowable for Cyclohexanone	mg/m³	0.2	N/A
Allowable for Ethanol	mg/m³	0.3	N/A
Allowable for Ethyl Acetate	mg/m³	0.1	N/A
Allowable for Heptane	mg/m³	0.2	N/A
Allowable for Hexane	mg/m³	0.1	N/A
Allowable for M + P – Xylene	mg/m³	0.2	N/A
Allowable for Methyl Ethyl Ketone	mg/m³	0.1	N/A
Allowable for Methyl-iso-butyl Ketone	mg/m³	0.1	N/A
Allowable for o-Xylene	mg/m³	0.1	N/A
Allowable for Tetrahydrofuran	mg/m³	0.2	N/A
Allowable for Toluene	mg/m³	0.1	N/A
Allowable for TOTAL	mg/m³	2.3	10.0

Method Deviations

Nature of Deviation			
(x = deviation applies to the associated run)	1		
The absorption efficiency for all of the individual Parameters was not met (acetone), however it should be noted the results were of an extremely low order.	х		

CLASS II ORGANICS: MEASUREMENT UNCERTAINTY CALCULATIONS

		Value					Stand
Measured Quantities	Symbol	Run 1		Sy	mbol	Units	Run 1
Sampled Volume (STP)	V _m	0.0118		,	uV _m	m³	0.0002
Leak	L	0.00			uL	%	-
Laboratory Result	L _r	10.00			uL _r	%	-

		Unce	ertainty as a Percentage	
Measured Quantities	Units	Run 1		Requirement of Standard
Sampled Volume (STP)	%	2.00]	≤2%
Leak	%	0.00		≤5%
Laboratory Result	%	10.00		No Requirement

		Unc	ertainty i	n Measurement Units		Sensitivity Coefficient
Measured Quantities	Symbol	Units	Run 1		Run 1	
Sampled Volume (STP)	V _m	m³	0.0118		200.79	
Leak	L	mg/m³	0.000		1.00	
Laboratory Result	L _r	mg/m³	0.237		1.00	

		Uncertainty in Result					
Measured Quantities	Units	Run 1					
Sampled Volume (STP)	mg/m³	0.047					
Leak	mg/m³	0.0000					
Laboratory Result	mg/m³	0.2367					

	(Oxygen C
Measured Quantities	Units	Run 1
O₂ Correction Factor	-	N/A
Stack Gas O₂ Content	% v/v	N/A
MU for O₂ Correction	-	N/A
Overall MU For O ₂ Measurement	%	N/A

Parameter Units	Run 1
_	
Combined uncertainty mg/m³	0.241
Expanded uncertainty (95% confidence), without Oxygen Correction mg/m ³	0.473
Expanded uncertainty (95% confidence), with Oxygen Correction mg/m³	N/A
Expanded uncertainty (95% confidence), estimated with Method Deviations mg/m³	0.568
Reported Uncertainty mg/m³	0.568
Expanded uncertainty (95% confidence), without Oxygen Correction %	20.0
Expanded uncertainty (95% confidence), with Oxygen Correction %	N/A
Expanded uncertainty (95% confidence), estimated with Method Deviations %	24.0
Reported Uncertainty %	24.0

 $NOTE: Uncertainties\ reported\ in\ mg/m^3\ are\ based\ upon\ the\ summation\ of\ all\ Speciated\ VOCs\ Measured.$

Page 38 of 127 Sample Date/s: 13h - 14th April 2023 Industrial Emissions Licence: P0110-03

TOTAL VOCs (as CARBON): RESULTS SUMMARY

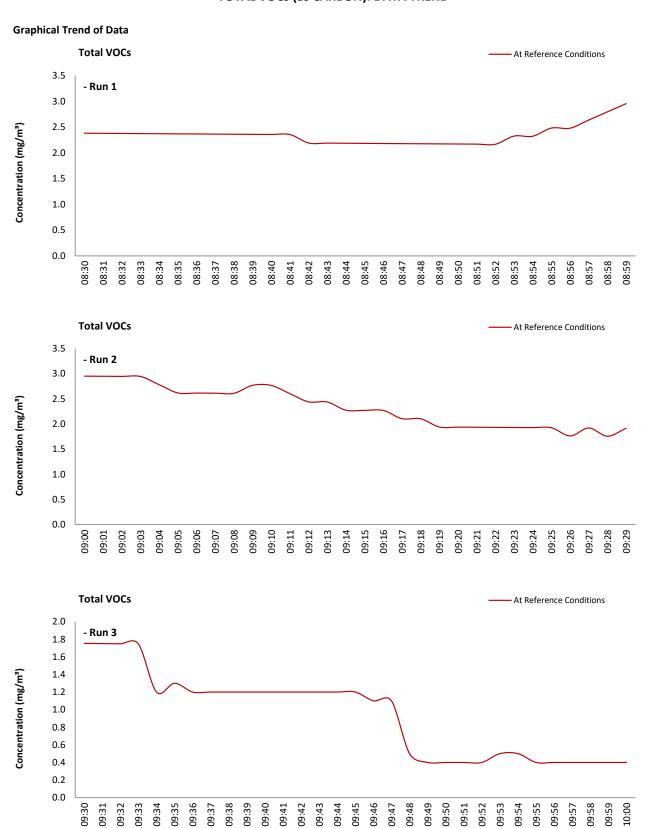
Arran Chemical Company Limited, Athlone A-2-2 CAU Scrubber

Sample Runs

Parameter	Units	Run 1	Run 2	Run 3	Mean
Raw Concentration	ppm	1.50	1.54	0.89	1.31
Concentration	mg/m³	2.35	2.33	0.94	1.87
Uncertainty	±mg/m³	0.44	0.44	0.43	0.43
Mass Emission	g/hr	1.9	1.8	0.7	1.5
Uncertainty	±g/hr	0.5	0.5	0.4	0.4

General Sampling Information

Parameter	Value
Standard	EN 12619:2013
Technical Procedure	CAT-TP-20
Probe Material	Stainless Steel
Filtration Type / Size	0.1μm Glass Fibre
Heated Head Filter Used	Yes
Heated Line Temperature	180°C
Span Gas Type	Propane In Synthetic Air (5 Grade)
Span Gas Reference Number	1.0552
Span Gas Expiry Date	20/01/2028
Span Gas Start Pressure (bar)	120
Gas Cylinder Concentration (ppm)	79.39
Span Gas Set Point (ppm)	79.39
Span Gas Uncertainty (%)	2
Zero Gas Type	Synthetic Air (5 Grade)
Number of Sampling Lines Used	1/1
Number of Sampling Points Used	1/1
Sample Point I.D.'s	A1


FORMAT: Number Used / Number Required FORMAT: Number Used / Number Required

Reference Conditions

Reference Conditions are: 273K, 101.3kPa, dry gas.

TOTAL VOCs (as CARBON): DATA TREND

TOTAL VOCs (as CARBON): SAMPLING DETAILS & QUALITY ASSURANCE

Sampling Details

Parameter	Units	Run 1	Run 2	Run 3	
Sampling Times	-	08:30 - 09:00	09:00 - 09:30	09:30 - 10:00	
Sampling Dates	-	14/04/2023	14/04/2023	14/04/2023	
Instrument Range	ppm	100	100	100	
Span Gas Value	ppm	79.4	79.4	79.4	

Quality Assurance

Qua	ality Assurance				
	Zero Drift	Units	Run 1	Run 2	Run 3
	Zero Down Sampling Line (Pre)	ppm	0.00	0.00	0.00
=	Zero Down Sampling Line (Post)	ppm	0.20	0.20	0.20
S S	Zero Drift	ppm	0.20	0.20	0.20
"	Zero Drift	%	0.25	0.25	0.25
	Drift Correction Applied	2-5%	No	No	No
	Allowable Zero Drift	± ppm	3.97	3.97	3.97
	Zero Drift Acceptable	-	Yes	Yes	Yes
	Span Drift	Units	Run 1	Run 2	Run 3
	Span Down Sampling Line (Pre)	ppm	79.30	79.30	79.30
_	Span Down Sampling Line (Post)	ppm	79.40	79.40	79.40
SPL 2	Span Drift	ppm	0.10	0.10	0.10
٥	Span Drift	%	0.13	0.13	0.13
	Drift Correction Applied	2-5%	No	No	No
	Allowable Span Drift	± ppm	3.97	3.97	3.97
	Span Drift Acceptable	-	Yes	Yes	Yes
	Test Conditions	Units	Run 1	Run 2	Run 3
	Run Ambient Temperature Range	°C	4 - 5	5	5

Method Deviations

Nature of Deviation		Run Number	
(x = deviation applies to the associated run)	1	2	3
There are no deviations associated with the sampling employed.	х	х	х

TOTAL VOCs (as CARBON): MEASUREMENT UNCERTAINTY CALCULATIONS

RUN 2	RUN 3	Units
20.0	20.0	mg/m³ (REF)
15.0	15.0	%
2.33	0.94	mg/m³ (STP, dry)
100.0	100.0	ppm
160.6	160.6	mg/m³
79.4	79.4	ppm
1.61	1.61	ppm to mg/m ³
15.0	15.0	mg/m³
15.0	15.0	mg/m³
127.5	127.5	mg/m³
_	127.5	127.5 127.5

Performance characteristics	RUN 1	RUN 2	RUN 3	Units
Response time	45	45	45	seconds
Number of readings in measurement	30	30	30	-
Repeatability at zero	2.00	2.00	2.00	% full scale
Repeatability at span level	0.00	0.00	0.00	% full scale
Deviation from linearity	0.42	0.42	0.42	% of value
Zero drift	0.25	0.25	0.25	% full scale
Span drift	0.13	0.13	0.13	% full scale
Volume or pressure flow dependence	1.60	1.60	1.60	% of full scale
Atmospheric pressure dependence	0.30	0.30	0.30	% of value/kPa
Ambient temperature dependence	1.40	1.40	1.40	% full scale/10K
Combined interference	0.45	0.45	0.45	% range
Dependence on voltage	0.50	0.50	0.50	% full scale/10V
Losses in the line (leak)	0.13	0.13	0.13	% of value
Uncertainty of calibration gas	2.00	2.00	2.00	% of value

Performance characteristic	RUN 1	RUN 2	RUN 3	Units
Standard deviation of repeatability at zero	use rep at span	use rep at span	use rep at span	mg/m³
Standard deviation of repeatability at span level	0.00	0.00	0.00	mg/m³
Lack of fit	0.04	0.04	0.04	mg/m³
Drift	0.00	0.00	0.00	mg/m³
Volume or pressure flow dependence	0.00	0.00	0.00	mg/m³
Atmospheric pressure dependence	0.01	0.01	0.01	mg/m³
Ambient temperature dependence	0.20	0.20	0.20	mg/m³
Combined interference (from MCERTS Certificate)	0.04	0.04	0.04	mg/m³
Dependence on voltage	0.06	0.06	0.06	mg/m³
Losses in the line (leak)	0.00	0.00	0.00	mg/m³
Uncertainty of calibration gas	0.03	0.03	0.01	mg/m³

			RUN 1	RUN 2	RUN 3	Units
Measurement uncertainty		Result	2.35	2.33	0.94	mg/m³
Combined uncertainty			0.22	0.22	0.22	mg/m³
Expanded uncertainty	k =	1.96	0.44	0.44	0.43	mg/m³
Uncertainty corrected to std conds. (O₂)			0.44	0.44	0.43	mg/m³ (REF)

	RUN 1	RUN 2	RUN 3	Units
Expanded uncertainty (no O ₂) - at 95% Confidence	18.58	18.69	45.98	% of Value
Expanded uncertainty (no O ₂) - at 95% Confidence	2.18	2.18	2.17	% at ELV
Overall Allowable uncertainty (no O ₂) - at 95% Confidence	15.0	15.0	15.0	% at ELV
Result of Compliance with Uncertainty Requirement	COMPLIANT	COMPLIANT	COMPLIANT	-

	RUN 1	RUN 2	RUN 3	Units
Expanded uncertainty (with O ₂) - at 95% Confidence	N/A	N/A	N/A	% of Value
Expanded uncertainty (with O ₂) - at 95% Confidence	N/A	N/A	N/A	% at ELV
Overall Allowable uncertainty (with O ₂) - at 95% Confidence	N/A	N/A	N/A	% at ELV
Result of Compliance with Uncertainty Requirement	N/A	N/A	N/A	-

Requirement for SRM is that Uncertainty should be <15% of the value at the ELV, on a dry gas basis, or if O_2 correction is applied less than 15% + the uncertainty associated with the O_2 correction (using sqrt of sum squares to add uncertainty components).

VERSION HISTORY

Version Number	Record of changes made within this version of the document
V1	The original document issued to the client

EPA AIR EMISSIONS COMPLIANCE MONITORING EMISSIONS REPORT

(Prepared on behalf of the EPA by Element Ireland - EPA Contract No. OEE23-AEMP)

Element Ireland, Unit D8 North City Business Park, North Road, Finglas, Dublin 11 Your Element Ireland Contact: Dónal Ó Faogáin (+353 861 746 367) E: donal.ofaogain@element.com

Stack Emissions Testing Report Commissioned by

EPA Office of Environmental Enforcement

Installation Name & Address

Arran Chemical Company Limited Unit 1-3 Monksland Industrial Estate Athlone Co. Westmeath

Industrial Emissions Licence: P0110-03

Stack Reference A2-3 RTO

Dates of the Monitoring Campaign

13h - 14th April 2023

Job Reference Number

P0110-03CAR23-01B

Report Written by	
Donal O Faogain	
Senior Team Leader	
MCERTS Level 2	
MM13 1259	
TE1 TE2 TE3 TE4	

Report Checked by	Report Approved by
Darragh Long	Neil Kelly
Team Leader	Team Leader
MCERTS Level 2	MCERTS Level 2
MM18 1494	MM16 1390
TE1 TE2 TE3 TE4	TE1 TE2 TE3 TE4

	Report Date					
16th October 2023						
	Version					
	Version 2					

Signature of Report Checker	Signature of Report Approver
Dlong	Nail Kally

CONTENTS

TITLE PAGE

CONTENTS

EXECUTIVE SUMMARY

Monitoring Objectives	3
Monitoring Results	4
Monitoring Dates & Times	5
Process Details	6
Monitoring & Analytical Methods	7
Summary of Sampling Deviations	7
Sampling Location	8
Plant Photos / Sample Points	9

APPENDIX 1 - Monitoring Personnel & List of Equipment

APPENDIX 2 - Raw Data, Sampling Equations & Charts

Opinions and interpretations expressed herein are outside the scope of Element Ireland's ISO 17025 accreditation.

This test report shall not be reproduced, except in full, without the written approval of Element Ireland.

The testing performed fully meets the technical requirements in Irish EPA Guidance Note, AG2.

This version of the test report supersedes the previous version of the test report. Please destroy all previous versions to ensure no confusion arises from having multiple test reports in existence.

(Page 1 of 7)

MONITORING OBJECTIVES

Arran Chemical Company Limited, Athlone A2-3 RTO 13h - 14th April 2023

Overall Aim of the Monitoring Campaign

Element Ireland were commissioned by the EPA Office of Environmental Enforcement to carry out stack emissions testing at Arran Chemical Company Limited on the A2-3 RTO at Athlone.

The aim of the monitoring campaign was to perform testing, as requested by the customer, for a number of prescribed pollutants. There are no emission limits set for any of the pollutants at this time.

Special Requirements

There were no special requirements.

Target Parameters

Dioxins & Furans, Hydrogen Chloride, Sum of individual VOCs (hazard statements H340, H350, H350i9 H360D or H360F), Process Solvents, Total VOCs (as Carbon), Oxides of Nitrogen (as NO₂)

(Page 2 of 7)

MONITORING RESULTS

Arran Chemical Company Limited, Athlone A2-3 RTO 13h - 14th April 2023

where MU = Measurement Uncertainty associated with the Result

		Concentrat					Mass Emi	ssion	
Parameter	Units	Result	MU	Limit		Units	Result	MU	Limit
			+/-					+/-	
Dioxins & Furans Upper Limit (worst case where <lod =="" lod)<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lod>									
Dioxins & Furans (NATO I-TEQ) - R1	ng/m³	0.0005	0.0001	0.1		μg/hr	0.00	0.000	-
Hydrogen Chloride 1	mg/m³	0.33	0.01	30		g/hr	0.6	0.044	150
Sum of individual VOCs (hazard statements H340, H350, H350i9 H360D or H360F)	mg/m³	< 1.69	0.34	2		g/hr	< 2.9	0.607	-
Sum of individual VOCs (hazard statements H341 and H351)	mg/m³	< 1.70	0.34	-		g/hr	< 2.9		-
Toluene 1	mg/m³	0.13	0.03	-		g/hr	0.2	0.046	-
Methanol 1	mg/m³	< 1.69	0.34	-		g/hr	< 2.9	0.614	-
isopropanol 1	mg/m³	< 0.34	0.07	-		g/hr	< 0.6	0.123	-
Methyl tert butyl ether	mg/m³	1.65	0.33	-		g/hr	2.8	0.599	-
Acetonitrile 1	mg/m³	< 1.69	0.34	-		g/hr	< 2.9	0.614	-
Heptane 1	mg/m³	< 0.17	0.03	-		g/hr	< 0.3	0.061	-
Ethanol 1	mg/m³	< 0.34	0.07	-		g/hr	< 0.6	0.123	-
2 Methyltetraydofuran ¹	mg/m³	< 0.17	0.03	-		g/hr	< 0.3	0.061	-
Total VOCs (as Carbon)	mg/m³	8.29	0.47	20		g/hr	14.22	1.208	-
Total VOCs (as Carbon) 1Hr R1	mg/m³	8.62	0.48	30		g/hr	14.79	1.239	-
Total VOCs (as Carbon) 1Hr R2	mg/m³	8.87	0.48	30		g/hr	15.23	1.261	-
Oxides of Nitrogen (as NO ₂)	mg/m³	63.00	2.92	250		g/hr	108.1	8.410	-
Carbon Dioxide	% v/v	Dry 0.52	0.23		,				
Oxygen	% v/v	Dry 20.11	0.47						
Water Vapour	% v/v	7.6	0.4						
Stack Gas Temperature	°C	50.0							
Stack Gas Velocity	m/s	6.9	0.30						
Volumetric Flow Rate (ACTUAL)	m³/hr	2250	141	Limit					
Volumetric Flow Rate (REF)	m³/hr	1716	107	5000					

 $NOTE: VOLUMETRIC \ FLOW \ RATE \ \& \ VELOCITY \ DATA \ TAKEN \ FROM \ THE \ PRELIMINARY \ VELOCITY \ TRAVERSE.$

¹ Reference Conditions (REF) are: 273K, 101.3kPa, dry gas.

² 1.5 times the ELV = 30mg/m³

(Page 3 of 7)

MONITORING DATE(S) & TIMES

Arran Chemical Company Limited, Athlone A2-3 RTO 13h - 14th April 2023

Parameter		Units	Concentration	Units	Mass Emission	Sampling	Sampling	Duration
						Date(s)	Times	mins
Dioxins & Furans (NATO)	R1	ng/m³	0.0005	μg/hr	0.0009	13/04/2023	11:00 - 17:00	360
Water Vapour (dioxins)	R1	% v/v	8.93			13/04/2023	11:00 - 17:00	360
Hydrogen Chloride	R1	mg/m³	0.3	g/hr	0.57	13/04/2023	10:15 - 10:45	30
Water Vapour (HCI)	R1	% v/v	6.23			13/04/2023	10:15 - 10:45	30
Sum of individual VOCs (hazard statements H340, H350, H350i9 H360D or H360F)	R1	mg/m³	< 1.69	g/hr	< 2.90	13/04/2023	13:00 - 13:30	30
Sum of individual VOCs (hazard statements H341 and H351)	R1	mg/m³	< 1.70	g/hr	< 2.92	13/04/2023	13:50 - 14:20	30
Toluene	R1	mg/m³	0.13	g/hr	0.22	13/04/2023	13:00 - 13:30	30
Methanol	R1	mg/m³	< 1.69	g/hr	< 2.90	13/04/2023	13:00 - 13:30	30
isopropanol	R1	mg/m³	< 0.34	g/hr	< 0.58	13/04/2023	13:00 - 13:30	30
Methyl tert butyl ether	R1	mg/m³	1.65	g/hr	2.83	13/04/2023	13:00 - 13:30	30
Acetonitrile	R1	mg/m³	< 1.69	g/hr	< 2.90	13/04/2023	13:00 - 13:30	30
Heptane	R1	mg/m³	< 0.17	g/hr	< 0.29	13/04/2023	13:00 - 13:30	30
Ethanol	R1	mg/m³	< 0.34	g/hr	< 0.58	13/04/2023	13:00 - 13:30	30
2 Methyltetraydofuran	R1	mg/m³	< 0.17	g/hr	< 0.29	13/04/2023	13:00 - 13:30	30
Total VOCs (as Carbon)	R1	mg/m³	7.12	g/hr	12.21	13/04/2023	12:50 - 13:20	30
Total VOCs (as Carbon)	R2	mg/m³	10.12	g/hr	17.37	13/04/2023	13:20 - 13:50	30
Total VOCs (as Carbon)	R3	mg/m³	7.62	g/hr	13.08	13/04/2023	13:50 - 14:20	30
Total VOCs (as Carbon) 1Hr Average	R1	mg/m³	8.62	g/hr	14.79	13/04/2023	12:50 - 13:50	60
Total VOCs (as Carbon) 1Hr Average	R2	mg/m³	8.87	g/hr	15.23	13/04/2023	13:20 - 14:20	60
Oxides of Nitrogen (as NO ₂)	R1	mg/m³	63.0	g/hr	108.1	13/04/2023	12:50 - 13:20	30
Carbon Dioxide	R1	% v/v	0.52			13/04/2023	12:50 - 13:20	30
Oxygen	R1	% v/v	20.11			13/04/2023	12:50 - 13:20	30
Velocity Traverse	R1					13/04/2023	10:50 - 10:55	

All results are expressed at the respective reference conditions.

Page 48 of 127 Sample Date/s: 13h - 14th April 2023 Industrial Emissions Licence: P0110-03

(Page 4 of 7)

PROCESS DETAILS

Arran Chemical Company Limited, Athlone A2-3 RTO 13h - 14th April 2023

Standard Operating Conditions

Parameter	Value
Process Status	Chemical Manufacturing
Capacity (of 100%) and Tonnes / Hour	1200 - 1800m3/hr
Continuous or Batch Process	Batch
Feedstock (if applicable)	Solvents
Abatement System	Thermal Oxidiser
Abatement System Running Status	On
Fuel	Natural Gas
Plume Appearance	None

(Page 5 of 7)

MONITORING & ANALYTICAL METHODS

Arran Chemical Company Limited, Athlone A2-3 RTO 13h - 14th April 2023

		Monitoring				Analysis				
Parameter	Standard	Technical	Sampling	Testing	Analytical	Analytical	Analysis	Analysis	Overall	LOD
		Procedure	Status	Lab	Procedure	Technique	Status	Lab	Status	(Average)
Dioxins & Furans	EN 1948	CAT-TP-07	MCERTS	EET	PM137, TM201	GC-HRMS	MCERTS	EET	MCERTS	0.0005 ng/m³
Hydrogen Chloride	EN 1911	CAT-TP-11	MCERTS	EET	CAT-AP-01	IC	MCERTS	EET	MCERTS	0.073 mg/m ³
Sum of individual VOCs (hazard statements H340, H350, H350i9 H360D or H360F)	CEN/TS 13649	CAT-TP-16	MCERTS	EET	GC/MS	GC/MS	None	MAR	None	1.688 mg/m ³
Sum of individual VOCs (hazard statements H341 and H351)	CEN/TS 13649	CAT-TP-16	MCERTS	EET	GC/MS	GC/MS	None	MAR	None	1.701 mg/m³
Toluene	CEN/TS 13649	CAT-TP-16	MCERTS	EET	WI3042	GC/MS	MCERTS	MAR	MCERTS	0.084 mg/m ³
Methanol	CEN/TS 13649	CAT-TP-16	MCERTS	EET	WI3042	GC/MS	None	MAR	None	1.688 mg/m ³
isopropanol	CEN/TS 13649	CAT-TP-16	MCERTS	EET	WI3042	GC/MS	17025	MAR	17025	0.338 mg/m ³
Methyl tert butyl ether	CEN/TS 13649	CAT-TP-16	MCERTS	EET	WI3042	GC/MS	MCERTS	MAR	MCERTS	0.084 mg/m ³
Acetonitrile	CEN/TS 13649	CAT-TP-16	MCERTS	EET	WI3042	GC/MS	None	MAR	None	1.688 mg/m ³
Heptane	CEN/TS 13649	CAT-TP-16	MCERTS	EET	WI3042	GC/MS	None	MAR	None	0.169 mg/m ³
Ethanol	CEN/TS 13649	CAT-TP-16	MCERTS	EET	WI3042	GC/MS	17025	MAR	17025	0.338 mg/m ³
2 Methyltetraydofuran	CEN/TS 13649	CAT-TP-16	MCERTS	EET	WI3042	GC/MS	None	MAR	None	0.169 mg/m ³
Water Vapour	EN 14790	CAT-TP-05	MCERTS	EET	CAT-TP-05	Gravimetric	MCERTS	EET	MCERTS	0.10 % v/v
Total VOCs (as Carbon)	EN 12619:2013	CAT-TP-20	MCERTS	EET	Flame Ioni	sation Detection b	y Sick 300	6	MCERTS	0.32 mg/m ³
Oxides of Nitrogen (as NO ₂)	EN 14792	CAT-TP-39	MCERTS	EET	Chemilum	inescence by Horik	oa PG-350	E	MCERTS	0.41 mg/m ³
Carbon Dioxide	CEN/TS 17405	CAT-TP-39	MCERTS	EET	ND	IR by Horiba PG-3	50E		MCERTS	0.1 %
Oxygen	EN 14789	CAT-TP-39	MCERTS	EET	Dry Parama	gnetic Cell by Hor	iba PG-35	0E	MCERTS	0.1 %
Velocity & Vol. Flow Rate	EN 16911-1 (MID)	CAT-TP-41	MCERTS	EET	Pitot '	Tube and Thermo	couple		MCERTS	1.2 m/s

ANALYSIS LABORATORIES

(with short name reference as appears in the table above)

Element (Stockport Lab - EET)	ISO 17025 Accreditation Number: 4279
Marchwood Scientific Services Ltd (MAR)	ISO 17025 Accreditation Number: 1668

SUMMARY OF SAMPLING DEVIATIONS

Parameter	Run	Deviation
All	All	There are no deviations associated with the sampling employed.

Page 50 of 127 Sample Date/s: 13h - 14th April 2023 Industrial Emissions Licence: P0110-03

(Page 6 of 7)

SUITABILITY OF SAMPLING LOCATION

Duct Characteristics

Parameter	Units	Value
Туре	-	Circular
Depth	m	0.34
Width	m	-
Area	m²	0.09
Port Depth	cm	34
Orientation of Duct	-	Vertical
Number of Ports	-	2
Sample Port Size	-	4" BSP

Location of Sampling Platform

General Platform Information	Value
Permanent / Temporary Platform	Permanent
Inside / Outside	Outside

Platform Details

Irish EPA Technical Guidance Note AG1 / EN 15259 Platform Requirements	Value
Sufficient working area to manipulate probe and operate the measuring instruments	Yes
Platform has 2 levels of handrails (approx. 0.5m & 1.0m high)	Yes
Platform has vertical base boards (approx. 0.25m high)	Yes
Platform has chains / self closing gates at top of ladders	Yes
There are no obstructions present which hamper insertion of sampling equipment	Yes
Safe Access Available	Yes
Easy Access Available	Yes

Sampling Location / Platform Improvement Recommendations

The sampling location meets all the requirements specified in Irish EPA Guidance Note AG1 and EN 15259, and therefore there are no improvement recommendations.

EN 15259 Homogeneity Test Requirements

There is no requirement to perform a EN 15259 Homogeneity Test on this Stack.

Sampling Plane Validation Criteria (from EN 15259)

Criteria in EN 15259	Units	Traverse 1
Lowest Differential Pressure	Pa	35.2
Mean Velocity	m/s	6.88
Lowest Gas Velocity	m/s	6.88
Highest Gas Velocity	m/s	6.88
Ratio of Above	: 1	1.00
Maximum Angle of Swirl	0	3.00
No Local Negative Flow	-	Yes

(Page 7 of 7)

PLANT PHOTOS

Photo 1

Photo 2



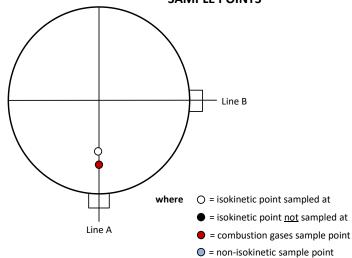

Photo 3

Photo 4

SAMPLE POINTS

APPENDICES

APPENDIX CONTENTS

APPENDIX 1 - Stack Emissions Monitoring Personnel, List of Equipment & Methods and Technical Procedures Used

APPENDIX 2 - Summaries, Calculations, Raw Data and Charts

Page 53 of 127 Sample Date/s: 13h - 14th April 2023 Industrial Emissions Licence: P0110-03

STACK EMISSIONS MONITORING PERSONNEL

Position	Name MCERTS Accreditation		MCERTS Number	Technical Endorsements	
Team Leader	Donal O Faogain	MCERTS Level 2	MM13 1259	TE1 TE2 TE3 TE4	
Technician	James O'Connor	MCERTS Trainee	MM22 1720	TE1	

LIST OF EQUIPMENT

Extractive Sampling			
Equipment Type	Equipment I.D.		
Control Box DGM (1)	CAT 7.166		
Control Box DGM (2)	-		
Box Thermocouples (1)	-		
Box Thermocouples (2)	-		
Umbilical (1)	CAT 3.555		
Umbilical (2)	-		
Oven Box (1)	-		
Oven Box (2)	-		
Heated Probe (1)	CAT 5.143		
Heated Probe (2)	-		
Heated Probe (3)	-		
S-Pitot (1)	CAT 21p.92		
S-Pitot (2)	CAT 21p.189		
L-Pitot	-		
Site Balance	CAT 17.68		
500g / 1Kg Check Weights	CAT 17.68		
Last Impinger Arm	CAT 4.0001		
Callipers	CAT 23.11		
Tubes Kit Thermocouple	CAT 4.440		

Instrumental Analysers				
Equipment Type	Equipment I.D.			
Horiba PG-350E	CAT 39.9			
SELECT Horiba Model (2)	-			
SELECT Servomex Model	-			
SELECT NOX Analyser/Convertor	-			
ABB AO2020-URAS26	-			
Testo 350 XL	-			
JCT JCC P1 Cooler	CAT 4.1122			
SELECT FTIR	-			
Gasmet Sampling System	-			
Sick 3006	CAT 8.15			
M&C PSS	CAT 12.83			
Mass Flow Controller (1)	CAT 6.81			
Mass Flow Controller (2)	CAT 6.45			
Mass View (1)	CAT 25.37			
Mass View (2)	-			
SELECT Logger 1	-			
SELECT Logger 2	-			
Bioaerosols Temperature Logger	-			
Electronic Refrigerator	-			

Miscellaneous Items			
Equipment Type	Equipment I.D.		
Digital Manometer (1)	CAT 3.117		
Digital Manometer (2)	-		
Digital Temperature Meter	CAT 3.117		
Stopwatch	CAT 14.53		
Barometer	CAT 13.22		
Stack Thermocouple (1)	CAT 4.1490		
Stack Thermocouple (2)	-		
Stack Thermocouple (3)	-		
1m Heated Line (1)	-		
1m Heated Line (2)	-		
1m Heated Line (3)	-		
5m Heated Line (1)	-		
15m Heated Line (1)	-		
20m Heated Line (1)	-		
20m Heated Line (2)	CAT 20.1020		
Dual Channel Heater Controller	CAT 20.1020		
Single Channel Heater Controller	-		
Laboratory Balance			
Tape Measure	CAT 16.94		

METHODS & TECHNICAL PROCEDURES USED

Parameter	Standard	Technical Procedure
Dioxins & Furans	EN 1948	CAT-TP-07
Hydrogen Chloride	EN 1911	CAT-TP-11
Sum of individual VOCs (hazard		
statements H340, H350,	CEN/TS 13649	CAT-TP-16
H350i9 H360D or H360F)		
Tetrahydrofuran	CEN/TS 13649	CAT-TP-16
Toluene	CEN/TS 13649	CAT-TP-16
Methanol	CEN/TS 13649	CAT-TP-16
isopropanol	CEN/TS 13649	CAT-TP-16
Methyl tert butyl ether	CEN/TS 13649	CAT-TP-16
Acetonitrile	CEN/TS 13649	CAT-TP-16
Heptane	CEN/TS 13649	CAT-TP-16
Ethanol	CEN/TS 13649	CAT-TP-16
2 Methyltetraydofuran	CEN/TS 13649	CAT-TP-16
Water Vapour	EN 14790	CAT-TP-05
Total VOCs (as Carbon)	EN 12619:2013	CAT-TP-20
Oxides of Nitrogen (as NO ₂)	EN 14792	CAT-TP-39
Carbon Dioxide	CEN/TS 17405	CAT-TP-39
Oxygen	EN 14789	CAT-TP-39
Velocity & Vol. Flow Rate	EN 16911-1 (MID)	CAT-TP-41

PRELIMINARY STACK SURVEY: CALCULATIONS

General Stack Details

Stack Details (from Traverse)	Units	Value
Stack Diameter / Depth, D	m	0.34
Stack Width, W	m	-
Stack Area, A	m²	0.09
Average Stack Gas Temperature, T _a	°C	50.0
Average Stack Gas Pressure	Pa	35.2
Average Stack Static Pressure, P _{static}	kPa	0.017
Average Barometric Pressure, P _b	kPa	98.9
Average Pitot Tube Calibration Coefficient, Cp	-	0.84

Stack Gas Composition & Molecular Weights

Component	Conc	Conc	Conc	Volume	Molar	Density	Conc
	ppm	Dry	Wet	Fraction	Mass	kg/m³	kg/m³
		% v/v	% v/v	r	М	р	p _i
CO ₂	-	0.52	0.49	0.0052	44.01	1.9635	0.01016
02	-	20.11	18.85	0.2011	32.00	1.4277	0.28705
N ₂	-	79.38	74.43	0.7938	28.01	1.2498	0.99208
Moisture (H₂O)	-	-	6.23	0.0623	18.02	0.8037	0.05005

Where: p = M / 22.41

 $p_i = r x p$

Calculation of Stack Gas Densities

Determinand	Units	Result
Dry Density (STP), P _{STD}	kg/m³	1.289
Wet Density (STP), P _{STW}	kg/m³	1.259
Dry Density (Actual), P Actual	kg/m³	1.064
Average Wet Density (Actual), P ActualW	kg/m³	1.039

Where:

 $P_{\rm STD}$ = sum of component concentrations, kg/m³ (not including water vapour)

 $P_{\rm STW}$ = sum of all wet concentrations / 100 x density, kg/m³ (including water vapour)

 $P_{Actual} = P_{STD} x (T_{STP} / (P_{STP})) x ((P_{static} + P_b) / T_a)$

 $P_{ActualW}$ (at each sampling point) = P_{STW} x (T_s / P_s) x (P_a / T_a)

Calculation of Stack Gas Volumetric Flowrate, Q

Duct gas flow conditions	Units	Actual	REF ¹	
Temperature	°C	50.0	0.0	
Total Pressure	kPa	98.9	101.3	
Moisture	%	7.58	0.00	

Gas Volumetric Flowrate (from Traverse)	Units	Result
Gas Volumetric Flowrate (Actual)	m³/hr	2250
Gas Volumetric Flowrate (STP, Wet)	m³/hr	1857
Gas Volumetric Flowrate (STP, Dry)	m³/hr	1716
Gas Volumetric Flowrate REF ¹	m³/hr	1716

PRELIMINARY STACK SURVEY: VELOCITY TRAVERSE TO EN 16911-1 (MID)

(1 of 1)

Parameter		Units	Value	
Date of Survey		_	13/04/2023	
,			, ,	
Time of Survey		-	10:50 - 10:55	
Atmospheric Press	sure	kPa	98.9	
Average Stack Sta	tic Pressure	Pa	17	
Result of Pitot Sta	gnation Test	-	Pass	
Are Water Drople	ts Present?	-	Yes	
Device Used	S-Type Pito	ot with KI	MO MP 210 (500Pa)	

Parameter	Units	Value
Initial Pitot Leak Check	-	Pass
Final Pitot Leak Check	-	Pass
Orientation of Duct	-	Vertical
Pitot Tube, C _p	-	0.84
Number of Lines Available	-	1
Number of Lines Used	-	1

Samp	ling	Line	Α
Junip	Б	LIIIC	_

				B B	-	
Traverse	Depth	ΔΡ	Temp	Wet Density	Velocity	Swirl
Point	m	Pa	°C	kg/m³	m/s	-
STATIC (Un	nits: Pa)	17.0				
Mean		35.2	50.0	1.039	6.88	
1	0.17	35.2	50.0	1.039	6.88	3.0

 $Page~56~of~127 \\ Sample Date/s:~13h-14th~April~2023 \\ Industrial~Emissions~Licence:~P0110-03$

PRELIMINARY STACK SURVEY: VELOCITY TRAVERSE TO EN 16911-1 (MID) - MEASUREMENT UNCERTAINTY (1 of 1)

Performance characteristics (Uncertainty Components)	Uncertainty	Value	Units
Standard Uncertainty on the coefficient of the Pitot Tube	u(k)	0.005	-
Standard Uncertainty associated with the mean local dynamic pressures	u(<u>∆pi</u>)	1.115	Pa
- Resolution	u(res)	0.00087	
- Calibration	u(cal)	0.129	
- Drift	u(drift)	0.083	
- Lack of Fit	u(fit)	0.029	
- Overall corrections to dynamic measurements	u(Cf)	0.242	
Standard uncertainty associated with the molar mass of the gas	u(M)	0.00004	-
- φO ₂ ,w	-	18.854	
- φCO ₂ ,w	-	0.485	
- Oxygen, dry	u(φO₂,d)	0.615	
- Carbon Dioxide, dry	u(φCO₂,d)	0.016	
- Water Vapour	u(φH₂O)	0.318	
- Oxygen, wet	u(φO₂,w)	0.581	
- Carbon Dioxide, wet	u(φCO₂,w)	0.015	
Standard uncertainty associated with the stack temperature	u(Tc)	1.648	К
Standard uncertainty associated with the absolute pressure in the duct	u(pc)	175.696	Pa
- Atmospheric Pressure	u(patm)	175.692	
- Static Pressure	u(<u>pstat</u>)	1.115	
Standard uncertainty associated with the density in the duct	u(ρ)	0.00561	-
Standard uncertainty associated with the local velocities	u(vi)	0.151	Pa
Standard uncertainty associated with the mean velocity	u(<u>v</u>)	0.151	m/s
Standard uncertainty associated with the mean velocity (95% Confidence)	Uc(v)	0.297	m/s
Standard uncertainty associated with the mean velocity (95% Confidence), relative	Uc,rel(v)	4.31	%
Standard uncertainty associated with the volume flow rate (95% Confidence)	Uc(qV,w)	140.6	m³/hı
- u²(a)/a²	-	0.00053	
- u²(qV,w)/q²V,w	-	0.00102	
- u²(qV,w)	-	5147	
- u(qV,w)	-	71.7	
Standard uncertainty associated with the volume flow rate (95% Confidence), relative	Uc,rel(qV,w)	6.25	%

Page 57 of 127 Sample Date/s: 13h - 14th April 2023 Industrial Emissions Licence: P0110-03

DIOXINS & FURANS: RESULTS SUMMARY

(PAGE 1 OF 4)

Arran Chemical Company Limited, Athlone A2-3 RTO

TEQ1 - UPPER LIMITS (worst case where <LOD = LOD)

Sample Runs (UPPER NATO I-TEQ)

Parameter	Units	Run 1
Concentration	ng/m³	0.00055
Uncertainty	±ng/m³	0.00011
Mass Emission	μg/hr	0.00094
Uncertainty	±μg/hr	0.00020

Sample Runs (UPPER WHO TEQ Humans / Mammals)

Parameter	Units	Run 1
Concentration	ng/m³	0.00065
Uncertainty	±ng/m³	0.00013
Mass Emission	μg/hr	0.00111
Uncertainty	±μg/hr	0.00024

Sample Runs (UPPER WHO TEQ Fish)

Parameter	Units	Run 1
Concentration	ng/m³	0.001
Uncertainty	±ng/m³	0.00014
Mass Emission	μg/hr	0.00123
Uncertainty	±μg/hr	0.00026

Sample Runs (UPPER WHO TEQ Birds)

Parameter	Units	Run 1
Concentration	ng/m³	0.001
Concentration		0.001
Uncertainty	±ng/m³	0.00020
Mass Emission	μg/hr	0.00168
Uncertainty	±μg/hr	0.00036

DIOXINS & FURANS: RESULTS SUMMARY

(PAGE 2 OF 4)

Arran Chemical Company Limited, Athlone A2-3 RTO

TEQ2 - LOWER LIMITS (best case where <LOD = 0)

Sample Runs (LOWER NATO I-TEQ)

Parameter	Units	Run 1
Concentration	ng/m³	0.000025
Uncertainty	±ng/m³	0.000005
Mass Emission	μg/hr	0.000042
Uncertainty	±μg/hr	0.000009

Sample Runs (LOWER WHO TEQ Humans / Mammals)

Parameter	Units	Run 1
Concentration	ng/m³	0.000022
Uncertainty	±ng/m³	0.000004
Mass Emission	μg/hr	0.000037
Uncertainty	±μg/hr	0.000008

Sample Runs (LOWER WHO TEQ Fish)

Parameter	Units	Run 1
Concentration	ng/m³	0.000011
Uncertainty	±ng/m³	0.000002
Mass Emission	μg/hr	0.000020
Uncertainty	±μg/hr	0.00004

Sample Runs (LOWER WHO TEQ Birds)

Parameter	Units	Run 1
Concentration	ng/m³	0.000011
Concentration	116/111	0.000011
Uncertainty	±ng/m³	0.000002
Mass Emission	μg/hr	0.000020
Uncertainty	±μg/hr	0.000004

DIOXINS & FURANS: RESULTS SUMMARY

(PAGE 3 OF 4)

Arran Chemical Company Limited, Athlone A2-3 RTO

TEQ1 - UPPER LIMITS (worst case where <LOD = LOD)

Blank Runs (UPPER NATO I-TEQ)

Blank Runs (UPPER WHO TEQ Humans / Mammals)

Blank Runs (UPPER WHO TEQ Fish)

Blank Runs (UPPER WHO TEQ Birds)

TEQ2 - LOWER LIMITS (best case where <LOD = 0)

Blank Runs (LOWER NATO I-TEQ)

Blank Runs (LOWER WHO TEQ Humans / Mammals)

Blank Runs (LOWER WHO TEQ Fish)

Parameter	Units	Blank 1
Concentration	ng/m³	0.000004

Blank Runs (LOWER WHO TEQ Birds)

DIOXINS & FURANS: RESULTS SUMMARY

(PAGE 4 OF 4)

Arran Chemical Company Limited, Athlone A2-3 RTO

Parameter	Units Run 1
Water Vapour	% v/v 8.93
Uncertainty	±% v/v 0.45

General Sampling Information

Parameter	Value					
Standard	EN 1948					
Technical Procedure	CAT-TP-07					
Name of Analytical Laboratory	EET					
Analytical Laboratory's Procedure	PM137, TM201					
ISO 17025 Accredited Analysis?	MCERTS					
Date of Sample Analysis	15/05/2023					
Probe Material	Titanium					
Filter Housing Material	Borosilicate Glass					
Glassware Material	Borosilicate Glass					
Absorption Material	XAD-2					
Positioning of Filter	Out Stack					
Filter Size and Material	90mm Quartz Fibre					
Number of Sampling Lines Used	1/	FO				
Number of Sampling Points Used	1/1	FO				
Sample Point I.D.'s	A1					

FORMAT: Number Used / Number Required FORMAT: Number Used / Number Required

Reference Conditions

Reference Conditions are: 273K, 101.3kPa, dry gas.

Page 61 of 127 Sample Date/s: 13h - 14th April 2023 Industrial Emissions Licence: P0110-03

DIOXINS & FURANS: ISOKINETIC SAMPLING CALCULATIONS

Test	Units	Run 1	
	Oilles	Null 1	
Absolute pressure of stack gas, P _s			
Barometric pressure, P _b	mmHg	737.3	
Stack static pressure, P _{static}	mmH₂O	1.8	
$P_s = (P_b + (P_{static} / 13.6))$	mmHg	737.4	
Volume of water vapour collected, V _{wstd}			
Total mass collected in impingers (liquid trap)	g	-146.4	
Total mass collected in impingers (silica trap)	g	608.2	
Total mass of liquid collected, V _{Ic}	g	461.8	
$V_{wstd} = (0.001246)(V_{lc})$	m³	0.5754	
Volume of gas metered dry, V _{mstd}			
Volume of gas sample through gas meter, V _m	m³	6.3840	
Gas meter correction factor, Y _d		1.0040	
Average dry gas meter temperature, T _m	°c	17.2	
Average pressure drop across orifice, ΔH	mmH₂O	33.2	
	m³	5.8687	
$V_{mstd} = ((0.3592)(V_m)(P_b + (\Delta H/13.6))(Y_d)) / (T_m + 273)$	- ""	3.8087	
Moisture content, B _{wo} & R _{wv}	3	0.0003	
$B_{wo} = V_{wstd} / (V_{mstd} + V_{wstd})$	m³	0.0893	
B _{wo} as a percentage	% v/v	8.93	
Reported Water Vapour, checked with Tables in EN 14790, Rwv	% v/v	8.93	
Volume of gas metered wet, V _{mstw}			
$V_{mstw} = (V_{mstd})(100/(100 - R_{wv}))$	m³	6.4441	
Volume of gas metered at Oxygen Reference Conditions, V _{mstd@X%O₂} & V _{mstw@}	0X%O₂		
IED & Incinerates Hazardous Material? (Yes = no positive O₂ correction)	-	No	
% wet oxygen measured in gas stream, ACT%O _{2w}	% v/v	N/A	
% dry oxygen measured in gas stream, ACT%O _{2d}	% v/v	N/A	
% oxygen reference condition, REF%O₂	% v/v	N/A	
O_2 Reference Factor wet $(O_{2REFw}) = (21 - REF\%O_2) / (21 - ACT\%O_{2w})$	-	N/A	
O_2 Reference Factor dry $(O_{2REFd}) = (21 - REF\%O_2) / (21 - ACT\%O_{2d})$	-	N/A	
$V_{\text{mstw} \otimes X\% \text{oxygen}} = (V_{\text{mstw}}) / (O_{2\text{REFw}})$	m³	N/A	
$V_{\text{mstd}@X\%oxygen} = (V_{\text{mstd}}) / (O_{2REFd})$	m³	N/A	
Molecular weight of dry gas stream, M _d			
CO ₂	% v/v	0.40	
02	% v/v	20.00	
Total	% v/v	20.40	
N ₂	% v/v	79.60	
$M_d = 0.44(\%CO_2) + 0.32(\%O_2) + 0.28(\%N_2)$	g/gmol	28.86	
	g/gilloi	28.80	
Molecular weight of stack gas (wet), M _s	g/gm al	27.00	
$M_s = M_d(1 - (R_{wv}/100)) + 18(R_{wv}/100)$	g/gmol	27.89	
Velocity of stack gas, V _s		24.07	
Pitot tube velocity constant, K _p	-	34.97	
Velocity pressure coefficient, C _p	-	0.88	
Average of velocity heads, ΔP _{avg}	mmH₂O	4.85	
Average square root of velocity heads, VΔP	√mmH₂O	2.20	
Average stack gas temperature, T _s	°C	48.8	
$V_s = ((K_p)(C_p)(V\Delta P)(VT_s + 273)) / (V(M_s)(P_s))$	m/s	8.43	
Total flow of stack gas: Actual (Q_a), Wet (Q_{stw}), Dry (Q_{std}), Wet@ O_{2REF} (Q_{stwO_2}), Dry@O _{2REF} (Q _{stdO2})	
Area of stack, A _s	m²	0.09	
$Q_a = (60)(A_s)(V_s)$	m³/min	45.9	
Conversion factor (K/mm.Hg), C _f	-	0.3592	
$Q_{\text{stw}} = ((Q_a)(P_s)(C_f)) / ((T_s) + 273)$	m³/min	37.8	
$Q_{\text{std}} = ((Q_{\text{a}})(P_{\text{s}})(C_{\text{f}})(1 - (R_{\text{ww}}/100))) / ((T_{\text{s}}) + 273)$	m³/min	34.4	
$Q_{\text{stw}Q_2} = ((Q_a)(P_s)(C_f)) / ((T_s) + 273) / (O_{2REFw})$	m³/min	N/A	
$Q_{\text{StdO}_2} = ((Q_a)(P_s)(C_f)(1 - (R_{wv}/100))) / ((T_s) + 273) / (O_{2REFd})$	m³/min	N/A	
Percent isokinetic, %I	,	11/15	
Nozzle diameter, D _n	mm	7.01	
Nozzle area, A _n	mm mm²		
i ii	mm²	38.56	
Total sampling time, q	min	360	
$\%I = (4.6398E^6)(T_s+273)(V_{mstd}) / (P_s)(V_s)(A_n)(q)(1 - (R_{wv}/100))$	%	111.4	

DIOXINS & FURANS: SAMPLING DETAILS

RUN 1

Parameter	Units	Value				
Sampling Times	-	11:00 - 17:00				
Sampling Dates	-	13/04/2023				
Sampling Device	-	ISO				
Volume Sampled (REF)	m³	5.8687				

Where: ISO stands for Manual Isokinetic Sampling Train

					NATO I-TEQ		WHO Humans /		WHO Fish		WHO Birds	
Parameter	Units	Result	DL	TEQ1	TEQ2	TEQ1	TEQ2	TEQ1	TEQ2	TEQ1	TEQ2	% Rec
2378-TCDD	ng	ND	0.00055	0.0006	0.0000	0.0006	0.0000	0.0006	0.0000	0.0006	0.0000	94
12378-PeCDD	ng	ND	0.00178	0.0009	0.0000	0.0018	0.0000	0.0018	0.0000	0.0018	0.0000	78
123478-HxCDD	ng	ND	0.00114	0.0001	0.0000	0.0001	0.0000	0.0006	0.0000	0.0001	0.0000	79
123678-HxCDD	ng	ND	0.00119	0.0001	0.0000	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	75
123789-HxCDD	ng	ND	0.00122	0.0001	0.0000	0.0001	0.0000	0.0000	0.0000	0.0001	0.0000	-
1234678-HPeCDD	ng	0.00600	0.00073	0.0001	0.0001	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	76
OCDD	ng	0.02099	0.00131	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	86
Total Dioxins	ng	0.0000	-	0.0019	0.0001	0.0028	0.0001	0.0029	0.0000	0.0025	0.0000	-
2378-TCDF	ng	ND	0.00136	0.0001	0.0000	0.0001	0.0000	0.0001	0.0000	0.0014	0.0000	69
12378-PeCDF	ng	ND	0.00122	0.0001	0.0000	0.0000	0.0000	0.0001	0.0000	0.0001	0.0000	100
23478-PeCDF	ng	ND	0.00123	0.0006	0.0000	0.0004	0.0000	0.0006	0.0000	0.0012	0.0000	70
123478-HxCDF	ng	ND	0.00089	0.0001	0.0000	0.0001	0.0000	0.0001	0.0000	0.0001	0.0000	80
123678-HxCDF	ng	ND	0.00095	0.0001	0.0000	0.0001	0.0000	0.0001	0.0000	0.0001	0.0000	75
234678-HxCDF	ng	ND	0.00130	0.0001	0.0000	0.0001	0.0000	0.0001	0.0000	0.0001	0.0000	62
123789-HxCDF	ng	ND	0.00143	0.0001	0.0000	0.0001	0.0000	0.0001	0.0000	0.0001	0.0000	101
1234678-HPeCDF	ng	0.00503	0.00042	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	75
1234789-HPeCDF	ng	0.00084	0.00049	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	97
OCDF	ng	0.00474	0.00058	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	77
Total Furans	ng	0.0000	-	0.0013	0.0001	0.0011	0.0001	0.0013	0.0001	0.0032	0.0001	-
Totals	ng	0.0000	-	0.0032	0.0001	0.0038	0.0001	0.0042	0.0001	0.0058	0.0001	-
Total Concentration	ng/m³	-	-	0.0005	0.0000	0.0006	0.0000	0.0007	0.0000	0.0010	0.0000	-
Limit of Detection	ng/m³	-	-	0.0005	-	0.0006	-	0.0007	-	0.0010	-	-

Where: ND stands for Non Detected

DL stands for Analytical Detection Limit

TEQ1 refers to Non Detected Congeners at the Detection Limit

TEQ2 refers to Non Detected Congeners at Zero

% Rec stands for the Recovery Percentage of the Sample

Page 63 of 127 Sample Date/s: 13h - 14th April 2023 Industrial Emissions Licence: P0110-03

DIOXINS & FURANS: SAMPLING DETAILS

(Continued)

BLANK 1

Parameter	Units	Value
Sampling Dates	-	13/04/2023
Sampling Device	-	ISO
Average Volume Sampled (REF)	m³	5.8687

Where: ISO stands for Manual Isokinetic Sampling Train

				NA		WHO H	•	W		W		
Parameter	Units	Result	DL	I-T TEQ1	EQ TEQ2	Mam TEQ1	mals TEQ2	Fi TEQ1	sh TEQ2	Bii TEQ1	rds TEQ2	% Rec
				`			<u> </u>		•			
2378-TCDD	ng	ND	0.00043	0.0004	0.0000	0.0004	0.0000	0.0004	0.0000	0.0004	0.0000	84
12378-PeCDD	ng	ND	0.00128	0.0006	0.0000	0.0013	0.0000	0.0013	0.0000	0.0013	0.0000	74
123478-HxCDD	ng	ND	0.00108	0.0001	0.0000	0.0001	0.0000	0.0005	0.0000	0.0001	0.0000	74
123678-HxCDD	ng	ND	0.00106	0.0001	0.0000	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	69
123789-HxCDD	ng	ND	0.00109	0.0001	0.0000	0.0001	0.0000	0.0000	0.0000	0.0001	0.0000	-
1234678-HPeCDD	ng	0.00440	0.00070	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	74
OCDD	ng	0.02395	0.00092	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	86
Total Dioxins	ng	0.0000	-	0.0015	0.0001	0.0021	0.0001	0.0023	0.0000	0.0019	0.0000	-
2378-TCDF	ng	ND ND	0.00119	0.0001	0.0000	0.0001	0.0000	0.0001	0.0000	0.0012	0.0000	Paramete 63
12378-PeCDF	ng	ND	0.00089	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	103
23478-PeCDF	ng	ND	0.00090	0.0005	0.0000	0.0003	0.0000	0.0005	0.0000	0.0009	0.0000	68
123478-HxCDF	ng	ND	0.00055	0.0001	0.0000	0.0001	0.0000	0.0001	0.0000	0.0001	0.0000	81
123678-HxCDF	ng	ND	0.00058	0.0001	0.0000	0.0001	0.0000	0.0001	0.0000	0.0001	0.0000	75
234678-HxCDF	ng	ND	0.00075	0.0001	0.0000	0.0001	0.0000	0.0001	0.0000	0.0001	0.0000	64
123789-HxCDF	ng	ND	0.00082	0.0001	0.0000	0.0001	0.0000	0.0001	0.0000	0.0001	0.0000	101
1234678-HPeCDF	ng	0.00140	0.00038	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	69
1234789-HPeCDF	ng	ND	0.00044	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	106
OCDF	ng	0.00273	0.00057	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	78
Total Furans	ng	0.0000	-	0.0009	0.0000	0.0007	0.0000	0.0008	0.0000	0.0025	0.0000	-
Totals	ng	0.0000	-	0.0024	0.0001	0.0028	0.0001	0.0031	0.0000	0.0044	0.0000	-
Total Concentration	ng/m³	-	-	0.0004	0.0000	0.0005	0.0000	0.0005	0.0000	0.0007	0.0000	-

Where: ND stands for Non Detected

DL stands for Analytical Detection Limit

TEQ1 refers to Non Detected Congeners at the Detection Limit

TEQ2 refers to Non Detected Congeners at Zero

% Rec stands for the Recovery Percentage of the Sample

Page 64 of 127 Sample Date/s: 13h - 14th April 2023 Industrial Emissions Licence: P0110-03

DIOXINS & FURANS: QUALITY ASSURANCE

(PAGE 1 OF 2)

Sample Runs

Leak Test Results	Units	Run 1
Mean Sampling Rate	I/min	17.8
Pre-Sampling Leak Rate	I/min	0.11
Post-Sampling Leak Rate	l/min	0.05
Allowable Leak Rate	I/min	0.89
Leak Test Acceptable	-	Yes
Water Droplets	Units	Run 1
Are Water Droplets Present	-	No
MU (Concurrent Water Vapour)	Units	Run 1
Measurement Uncertainty (MU)	%	5.1
Allowable MU	%	20.0
MU Acceptable	%	Yes
Silica Gel (Concurrent Water Vapour)	Units	Run 1
Less than 50% Faded	%	Yes
Isokinetic Criterion Compliance	Units	Run 1
Isokinetic Variation	%	111.4
Allowable Isokinetic Range	%	95 - 115
Isokineticity Acceptable	-	Yes
Filter Temperatures	Units	Run 1
	9.0	120
Maximum Filter Temperature	°C	120
Maximum Allowable Temperature	°C	125
Temperature Acceptable	-	Yes
Condenser Exit Temperature	Units	Run 1
Maximum Temperature Recorded	°C	19
Maximum Allowable Temperature	°C	20
Exit Temperature Acceptable	-	Yes
Test Conditions	Units	Run 1
1000 00.101.101.10		

DIOXINS & FURANS: QUALITY ASSURANCE

(PAGE 2 OF 2)

Blank Runs

Leak Test Results	Units	Blank 1
Expected Sampling Rate	l/min	15.0
Sampling Leak Rate	l/min	0.05
Allowable Leak Rate	l/min	0.75
Leak Test Acceptable	-	Yes

Validity of NATO I-TEQ Blank vs ELV	Units	Blank 1
Allowable Blank	ng/m³	0.010
Blank Acceptable	-	Yes

Method Deviations

Nature of Deviation		Run Number
(x = deviation applies to the associated run, wx = deviation also applies to the concurrent water vapour run)	1	
There are no deviations associated with the sampling employed.	wx	

Page 66 of 127 Sample Date/s: 13h - 14th April 2023 Industrial Emissions Licence: P0110-03

DIOXINS & FURANS (NATO I-TEQ): MEASUREMENT UNCERTAINTY CALCULATIONS

			Value			Standa
Measured Quantities	Symbol	Run 1		Symbol	Units	Run 1
Sampled Volume (Actual)	V _m	6.3840		uV _m	m³	0.1277
Sampled Gas Temperature	T _m	290.2		uT _m	K	2.00
Sampled Gas Pressure	ρ_{m}	98.3		uρ _m	kPa	0.50
Sampled Gas Humidity	H _m	0.00		uH _m	% v/v	1.00
Leak	L	0.28		uL	%	-
Laboratory Result	L _r	10.0		uL _r	%	-

		Unce	ertainty as a Percentage	
Measured Quantities	Units	Run 1		Requirement of Stan
Sampled Volume (Actual)	%	2.00		≤2%
Sampled Gas Temperature	%	0.69		≤1%
Sampled Gas Pressure	%	0.51		≤1%
Sampled Gas Humidity	%	1.00		≤1%
Leak	%	0.28		≤5%
Laboratory Result	%	10.0		No Requirement

		Und	ertainty	n Measurement Units		Sensitivity Coefficient
Measured Quantities	Symbol	Units	Run 1		Run 1	
Sampled Volume (STP)	V _m	m³	5.8687		0.0001	
Leak	L	ng/m³	0.0000		1.00	
Laboratory Result	L _r	ng/m³	0.0001		1.00	

		U
Measured Quantities	Units	Run 1
Sampled Volume (STP)	ng/m³	0.000014
Leak	ng/m³	0.000001
Laboratory Result	ng/m³	0.0001

	(Oxygen C
Measured Quantities	Units	Run 1
O₂ Correction Factor	-	N/A
Stack Gas O₂ Content	% v/v	N/A
MU for O₂ Correction	-	N/A
Overall MU For O ₂ Measurement	%	N/A

Parameter	Units	Run 1
Combined uncertainty	ng/m³	0.0001
Expanded uncertainty (95% confidence), without Oxygen Correction	ng/m³	0.0001
Expanded uncertainty (95% confidence), with Oxygen Correction	ng/m³	N/A
Expanded uncertainty (95% confidence), estimated with Method Deviations	ng/m³	0.0001
Reported Uncertainty	ng/m³	0.0001
	_	
Expanded uncertainty (95% confidence), without Oxygen Correction	%	20.2
Expanded uncertainty (95% confidence), with Oxygen Correction	%	N/A
Expanded uncertainty (95% confidence), estimated with Method Deviations	%	20.2
Reported Uncertainty	%	20.2

Page 67 of 127 Sample Date/s: 13h - 14th April 2023 Industrial Emissions Licence: P0110-03

HYDROGEN CHLORIDE: RESULTS SUMMARY

Arran Chemical Company Limited, Athlone A2-3 RTO

Sample Runs

Parameter	Units	Run 1
Concentration	mg/m³	0.33
Uncertainty	±mg/m³	0.01
Mass Emission	g/hr	0.6
Uncertainty	±g/hr	0.044

Parameter	Units	Run 1
Water Vapour	% v/v	6.23
Uncertainty	±% v/v	0.26

Blank Runs

General Sampling Information

Parameter	Value
Standard	EN 1911
Technical Procedure	CAT-TP-11
Name of Analytical Laboratory	EET
Analytical Laboratory's Procedure	CAT-AP-01
ISO 17025 Accredited Analysis?	MCERTS
Date of Sample Analysis	28/04/2023
Probe Material	Titanium
Filter Housing Material	Titanium
Impinger Material	Polyethylene
Absorption Solution	HPLC Grade Water
Positioning of Filter	In Stack
Filter Size and Material	47mm Quartz Fibre
Number of Sampling Lines Used	1/1
Number of Sampling Points Used	1/1
Sample Point I.D.'s	A1

FORMAT: Number Used / Number Required
FORMAT: Number Used / Number Required

Reference Conditions

Reference Conditions are: 273K, 101.3kPa, dry gas.

HYDROGEN CHLORIDE: SAMPLING DETAILS

Sample Runs

Parameter	Units	Run 1
	· I	
Sampling Times	-	10:15 - 10:45
Sampling Dates	-	13/04/2023
Sampling Device	-	MFC / MV
Duration	mins	30
Volume Sampled (STP, Dry)	m³	0.2777
Volume Sampled (STP, Wet)	m³	0.2961
Volume Sampled (REF)	m³	0.2777
Sample Flow Rate	l/min	9.24
Laboratory Result for Front Impingers	μg/ml	0.18
Laboratory Result for Back Impinger	μg/ml	0.34
Volume in Front Impingers	ml	281.5
Volume in Back Impinger	ml	124.3
Mass in Front Impingers	μg	50.7
Mass in Back Impinger	μg	42.3
Total Mass Collected	μg	92.9
Calculated Concentration	mg/m³	0.33
Liquid Trap Start Mass	g	1267.8
Liquid Trap End Mass	g	1278.8
Silica Trap Start Mass	g	1489.1
Silica Trap End Mass	g	1492.9
Total Mass Of Water Vapour	g	14.8
Calculated Water Vapour	% v/v	6.23

Where: MFC stands for Mass Flow Controller, MV stands for Mass View Flowmeter

Blank Runs

Parameter	Units	Blank 1
Blank Dates	-	13/04/2023
Average Volume Sampled (REF)	m³	0.2777
Laboratory Result for Impingers	μg/ml	0.05
Volume in Impingers	ml	330.6
Total Mass Collected	μg	16.5
Calculated Concentration	mg/m³	0.06

HYDROGEN CHLORIDE: QUALITY ASSURANCE

Sample Runs

Leak Test Results	Units	Run 1
Mean Sampling Rate	l/min	9.2
Pre-Sampling Leak Rate	l/min	0.05
Post-Sampling Leak Rate	l/min	0.05
Allowable Leak Rate	l/min	0.18
Leak Test Acceptable	-	Yes
Absorption Efficiency	Units	Run 1

Absorption Efficiency	Units	Run 1
Absorption Efficiency	%	54.5
Allowable Absorption Efficiency	%	N/A 1
Absorption Efficiency Acceptable	-	Yes ¹

¹ The concentration in the last absorber was less than 5 times the analytical detection limit.

Water Droplets	Units	Run 1
Are Water Droplets Present	-	No

MU (Concurrent Water Vapour)	Units	Run 1
Measurement Uncertainty (MU)	%	4.2
Allowable MU	%	20.0
MU Acceptable	%	Yes

Silica Gel (Concurrent Water Vapour)	Units	Run 1
Less than 50% Faded	%	Yes

Blank Runs

Leak Test Results	Units	Blank 1
Expected Sampling Rate	l/min	9.5
Pre-Sampling Leak Rate	l/min	0.05
Post-Sampling Leak Rate	l/min	0.11
Allowable Leak Rate	l/min	0.19
Leak Test Acceptable	-	Yes

Validity of Blank vs ELV	Units	Blank 1
Allowable Blank	mg/m³	3.0
Blank Acceptable	-	Yes

Method Deviations

Nature of Deviation		Run Number		
(x = deviation applies to the associated run, wx = deviation also applies to the concurrent water vapour run)	1			
There are no deviations associated with the sampling employed.	wx			

HYDROGEN CHLORIDE: MEASUREMENT UNCERTAINTY CALCULATIONS

		Value			Standar		
Measured Quantities	Symbol	Run 1		Syn	nbol	Units	Run 1
Sampled Volume (STP)	V _m	0.2777		u'	V _m	m³	0.0056
Leak	L	0.54		ι	ıL	%	-
Laboratory Result	L _r	1.05		u	JL _r	%	-

		Unce	ertainty as a Percentage	
Measured Quantities	Units	Run 1		Requirement of Standard
Sampled Volume (STP)	%	2.00		≤2%
Leak	%	0.54		≤2%
Laboratory Result	%	1.05		No Requirement

		Unc	ertainty i	n Measurement Units		Sensitivity Coefficient
Measured Quantities	Symbol	Units	Run 1		Run 1	
Sampled Volume (STP)	V _m	m³	0.2777		1.21	
Leak	L	mg/m³	0.001		1.00	
Laboratory Result	L _r	mg/m³	0.004		1.00	

		U		
Measured Quantities	Units	Run 1		
Sampled Volume (STP)	mg/m³	0.007		
Leak	mg/m³	0.0010		
Laboratory Result	mg/m³	0.0035		

	Oxygen Co			
Measured Quantities	Units	Run 1		
O ₂ Correction Factor	-	N/A		
Stack Gas O₂ Content	% v/v	N/A		
MU for O₂ Correction	-	N/A		
Overall MU For O ₂ Measurement	%	N/A		

Parameter U	Units	Run 1
Combined uncertainty mg	ng/m³	0.01
Expanded uncertainty (95% confidence), without Oxygen Correction	ng/m³	0.01
Expanded uncertainty (95% confidence), with Oxygen Correction	ng/m³	N/A
Expanded uncertainty (95% confidence), estimated with Method Deviations mg	ng/m³	0.01
Reported Uncertainty mg	ng/m³	0.01
Expanded uncertainty (95% confidence), without Oxygen Correction	%	4.5
Expanded uncertainty (95% confidence), with Oxygen Correction	%	N/A
Expanded uncertainty (95% confidence), estimated with Method Deviations	%	4.5
Reported Uncertainty	%	4.5

Page 71 of 127 Sample Date/s: 13h - 14th April 2023 Industrial Emissions Licence: P0110-03

SUM OF INDIVIDUAL VOCS (HAZARD STATEMENTS H340, H350, H35019 H360D OR H360F): RESULTS SUMMARY

Arran Chemical Company Limited, Athlone A2-3 RTO

Sample Runs

Parameter	Units	Run 1			Mean
Dimethylformamide	mg/m³	< 1.69			< 1.69
Total	mg/m³	< 1.69			< 1.69

General Sampling Information

Parameter	Value				
	0511/70 40640				
Standard	CEN/TS 13649				
Technical Procedure	CAT-TP-16				
No. 10 Control of the					
Name of Analytical Laboratory	MAR				
Analytical Laboratory's Procedure	GC/MS				
ISO 17025 Accredited Analysis?	See Executive Summary				
Date of Sample Analysis	15/05/2023				
Probe Material	Stainless Steel				
Sample Tube Type	Coconut Shell Charcoal				
Dynamic Dilution Employed	No				
Number of Sampling Lines Used	1/1				
Number of Sampling Points Used	1/1				
Sample Point I.D.'s	B1				

FORMAT: Number Used / Number Required FORMAT: Number Used / Number Required

Reference Conditions

Reference Conditions are: 273K, 101.3kPa, dry gas.

SUM OF INDIVIDUAL VOCS (HAZARD STATEMENTS H340, H350, H350I9 H360D OR H360F): SAMPLING DETAILS

RUN 1

Parameter	Units	Value
Sampling Times	-	13:00 - 13:30
Sampling Dates	-	13/04/2023
Sampling Device	-	MV
Duration	mins	30
N₂ to Stack Gas Dilution Ratio	: 1	0
Volume Sampled (REF)	m³	0.0118

Where: MV stands for Mass View (Mass Flow Controller Technology)

Parameter	Lab Result (Front) µg	Lab Result (Back) µg	Lab Result (Total) µg	LOD (Front) µg	LOD (Back) µg	LOD (Total) µg	Concentration mg/m³	Reported Concentration (Blank Reviewed) mg/m³	Reported LOD mg/m³	Adsorption Efficiency %
Dimethylformamide	< 10.0	< 10.0	20.0	10.0	10.0	20.0	< 1.688	< 1.688	1.688	100.0
Total			20.0			20.0	< 1.688	< 1.688	1.688	-

Reference Conditions are: 273K, 101.3kPa, dry gas.

Tube Lot Number and Unique ID: lot 2000, 0136644648

AG2 Reporting Format	ELV (mg/m³)	Results (mg/m³)	Breakdown of Results	Mass Emission (kg/h)
Sum of maividual vocs				
(hazard statements H340,	2	> 0 and < 1.69	> (sum of) and < (sum of 1)	>0.00000 and <0.00290
113E0 113E0:0 113C0D				I

Page 73 of 127 Sample Date/s: 13h - 14th April 2023 Industrial Emissions Licence: P0110-03

SUM OF INDIVIDUAL VOCS (HAZARD STATEMENTS H340, H350, H35019 H360D OR H360F): SAMPLING DETAILS

BLANK 1

Parameter	Units	Value
Sampling Dates	-	13/04/2023
Sampling Device	-	MV
Average Volume Sampled (REF)	m³	0.0118

Where: MV stands for Mass View (Mass Flow Controller Technology)

Parameter	Lab Result (Front) µg	Lab Result (Back) µg	Lab Result (Total) µg	Concentration mg/m³
Dimethylformamide	< 10.0	< 10.0	20.0	< 1.688
TOTAL			20.0	< 1.688

Reference Conditions are: 273K, 101.3kPa, dry gas.

Tube Lot Number and Unique ID: Lot:2000, 0136644651

Page 74 of 127 Sample Date/s: 13h - 14th April 2023 Industrial Emissions Licence: P0110-03

SUM OF INDIVIDUAL VOCS (HAZARD STATEMENTS H340, H350, H35019 H360D OR H360F) : QUALITY ASSURANCE (PAGE 1 OF 2)

Sample Runs

Leak Test Results	Units	Run 1
Mean Sampling Rate	I/min	0.4
Pre-Sampling Leak Rate	l/min	0.00
Post-Sampling Leak Rate	l/min	0.00
Allowable Leak Rate	l/min	0.02
Leak Test Acceptable	-	Yes
Adsorption Efficiency	Units	Run 1
Dimethylformamide	%	100.0
Allowable Adsorption Efficiency	%	95.0
Adsorption Efficiency Acceptable	-	Yes
Temperature at Sample Tubes	Units	Run 1
Temperature at Sample Tubes	Offics	Kull 1
Temperature	°C	32
Allowable Temperature	°C	40
Temperature Acceptable	-	Yes
Test Conditions	Units	Run 1
A 1: 17 - 1 - 1 - 12		
Ambient Temperature Recorded?	-	Yes

SUM OF INDIVIDUAL VOCS (HAZARD STATEMENTS H340, H350, H35019 H360D OR H360F) : QUALITY ASSURANCE (PAGE 2 OF 2)

Blank Runs

Leak Test Results	Units	Bla	nk 1
Expected Sampling Rate	l/min	0	.4
Sampling Leak Rate	l/min	0.	01
Allowable Leak Rate	l/min	0.	.02
Leak Test Acceptable	-	Υ	es
Validity of Blank vs ELV	Units	Blank 1	Allowed
Allowable for Dimethylformamide	mg/m³	1.7	0.2
Allowable for TOTAL	mg/m³	1.7	0.2

Method Deviations

Nature of Deviation		Run Number
(x = deviation applies to the associated run)	1	
There are no deviations associated with the sampling employed.	х	

NDIVIDUAL VOCS (HAZARD STATEMENTS H340, H350, H35019 H360D OR H360F): MEASUREMENT UNCERTAINTY CALCI

			Value			Stand	ard uncertaint
Measured Quantities	Symbol	Run 1		Symbo	Units	Run 1	
Sampled Volume (STP)	V _m	0.0118		uV _m	m³	0.0002	
Leak	L	0.00		uL	%	-	
Laboratory Result	L _r	10.00		uL _r	%	-	

		Unce	ertainty as a Percentage	
Measured Quantities	Units	Run 1		Requirement of Standard
Sampled Volume (STP)	%	2.00]	≤2%
Leak	%	0.00		≤5%
Laboratory Result	%	10.00		No Requirement

		Unc	ertainty i	n Measurement Units		Sensitivity Coefficient
Measured Quantities	Symbol	Units	Run 1		Run 1	
Sampled Volume (STP)	V _m	m³	0.0118		142.51	
Leak	L	mg/m³	0.000		1.00	
Laboratory Result	L _r	mg/m³	0.169		1.00	

		Uncertainty in Result					
Measured Quantities	Units	Run 1					
Sampled Volume (STP)	mg/m³	0.034					
Leak	mg/m³	0.0000					
Laboratory Result	mg/m³	0.1688					

	Oxygen Correction Part of MU B				
Measured Quantities	Units	Run 1			
O ₂ Correction Factor	-	N/A			
Stack Gas O₂ Content	% v/v	N/A			
MU for O₂ Correction	-	N/A			
Overall MU For O ₂ Measurement	%	N/A			

Parameter	Units	Run 1
Combined uncertainty	mg/m³	0.172
Expanded uncertainty (95% confidence), without Oxygen Correction	mg/m³	0.337
Expanded uncertainty (95% confidence), with Oxygen Correction	mg/m³	N/A
Expanded uncertainty (95% confidence), estimated with Method Deviations	mg/m³	0.337
Expanded direct dailty (55% communication), estimated with Method Beviations	6/	0.507
Reported Uncertainty	mg/m³	0.337
Expanded uncertainty (95% confidence), without Oxygen Correction	%	20.0
Expanded uncertainty (95% confidence), with Oxygen Correction	%	N/A
Expanded uncertainty (95% confidence), estimated with Method Deviations	%	20.0
Expanded differ taility (33% confidence), estimated with Method Deviations	/0	20.0
Reported Uncertainty	%	20.0

 $NOTE: Uncertainties\ reported\ in\ mg/m^3\ are\ based\ upon\ the\ summation\ of\ all\ Speciated\ VOCs\ Measured.$

SUM OF INDIVIDUAL VOCS (HAZARD STATEMENTS H341 AND H351): RESULTS SUMMARY

Arran Chemical Company Limited, Athlone A2-3 RTO

Sample Runs

Parameter	Units	Run 1
hudrofuron		
Tetrahydrofuran	mg/m³	< 1.70

General Sampling Information

Parameter	Value	
Standard	CEN/TS 13649	٦
Technical Procedure	CAT-TP-16	
Name of Analytical Laboratory	MAR	
Analytical Laboratory's Procedure	GC/MS	П
ISO 17025 Accredited Analysis?	See Executive Summary	П
Date of Sample Analysis	15/05/2023	
Probe Material	Stainless Steel	
Sample Tube Type	Silica Gel	٦
Dynamic Dilution Employed	No	
Number of Sampling Lines Used	1/1	
Number of Sampling Points Used	1/1	
Sample Point I.D.'s	A2	

FORMAT: Number Used / Number Required FORMAT: Number Used / Number Required

Reference Conditions

Reference Conditions are: 273K, 101.3kPa, dry gas.

SUM OF INDIVIDUAL VOCS (HAZARD STATEMENTS H341 AND H351): SAMPLING DETAILS

RUN 1

Parameter	Units	Value
Sampling Times	-	13:50 - 14:20
Sampling Dates	-	13/04/2023
Sampling Device	-	MV
Duration	mins	30
N₂ to Stack Gas Dilution Ratio	: 1	0
Volume Sampled (REF)	m³	0.0118

Where: MV stands for Mass View (Mass Flow Controller Technology)

Parameter	Lab Result (Front) µg	Lab Result (Back) µg	Lab Result (Total) µg	LOD (Front) µg	LOD (Back) µg	LOD (Total) µg	Concentration mg/m³	Reported Concentration (Blank Reviewed) mg/m³	Reported LOD mg/m³	Adsorption Efficiency %
Tetrahydrofuran	< 10.0	< 10.0	20.0	10.0	10.0	20.0	< 1.701	< 1.701	1.701	100.0

Reference Conditions are: 273K, 101.3kPa, dry gas.

Tube Lot Number and Unique ID: lot 13902, 0189708330

AG2 Reporting Format	ELV (mg/m³)	ELV (mg/m³) Results (mg/m³) Breakdown of Results		Mass Emission (kg/h)
(hazard statements H341 and H351)	SELECT	> 0 and < 1.7	> (sum of) and < (sum of 1)	>0.00000 and <0.00292

Page 79 of 127 Sample Date/s: 13h - 14th April 2023 Industrial Emissions Licence: P0110-03

SUM OF INDIVIDUAL VOCS (HAZARD STATEMENTS H341 AND H351) : SAMPLING DETAILS

BLANK 1

Parameter	Units	Value
Sampling Dates	-	13/04/2023
Sampling Device	-	MV
Average Volume Sampled (REF)	m³	0.0118

Where: MV stands for Mass View (Mass Flow Controller Technology)

Parameter	Lab Result (Front) µg	Lab Result (Back) µg	Lab Result (Total) μg	Concentration mg/m³	
				. = 4 .	
Tetrahydrofuran	< 10.0	< 10.0	20.0	< 1.701	

Reference Conditions are: 273K, 101.3kPa, dry gas.

Tube Lot Number and Unique ID: lot 13902, 0189708328

Page 80 of 127 Sample Date/s: 13h - 14th April 2023 Industrial Emissions Licence: P0110-03

SUM OF INDIVIDUAL VOCS (HAZARD STATEMENTS H341 AND H351): QUALITY ASSURANCE

(PAGE 1 OF 2)

Sample Runs

Leak Test Results	Units	Run 1
Mean Sampling Rate	l/min	0.4
Pre-Sampling Leak Rate	l/min	0.00
Post-Sampling Leak Rate	l/min	0.00
Allowable Leak Rate	l/min	0.02
Leak Test Acceptable	-	Yes
		D 4
Adsorption Efficiency	Units	Run 1
Tetrahydrofuran	%	100.0
Allowable Adsorption Efficiency	%	95.0
Adsorption Efficiency Acceptable	-	Yes
	T	
Temperature at Sample Tubes	Units	Run 1
Temperature	°C	28
Allowable Temperature	°C	40
Temperature Acceptable	-	Yes
Test Conditions	Units	Run 1
Ambient Temperature Recorded?	-	Yes

SUM OF INDIVIDUAL VOCS (HAZARD STATEMENTS H341 AND H351): QUALITY ASSURANCE

(PAGE 2 OF 2)

Blank Runs

Leak Test Results	Units	Bla	Blank 1			
Expected Sampling Rate	l/min	0	0.4			
Sampling Leak Rate	l/min	0.	0.00			
Allowable Leak Rate	l/min	0.02				
Leak Test Acceptable	-	Yes				
Validity of Blank vs ELV	Units	Blank 1	Blank 1 Allowed			
Allowable for Tetrahydrofuran	mg/m³	1.7	1.7 N/A			
Allowable for TOTAL	mg/m³	1.7	-			

Method Deviations

Nature of Deviation		Run Number	
(x = deviation applies to the associated run)	1		
There are no deviations associated with the sampling employed.	х		

Page 82 of 127 Sample Date/s: 13h - 14th April 2023 Industrial Emissions Licence: P0110-03

SUM OF INDIVIDUAL VOCS (HAZARD STATEMENTS H341 AND H351): MEASUREMENT UNCERTAINTY CALCULATIONS

		Value				Sta		
Measured Quantities	Symbol	Run 1		Sy	mbol	Units	Run 1	
Sampled Volume (STP)	V _m	0.0118		,	uV _m	m³	0.0002	
Leak	L	0.00			uL	%	-	
Laboratory Result	L _r	10.00			uL _r	%	-	

		Unce	ertainty as a Percentage	
Measured Quantities	Units	Run 1		Requirement of Standard
Sampled Volume (STP)	%	2.00]	≤2%
Leak	%	0.00		≤5%
Laboratory Result	%	10.00		No Requirement

		Unc	ertainty i	n Measurement Units		Sensitivity Coefficient
Measured Quantities	Symbol	Units	Run 1		Run 1	
Sampled Volume (STP)	V _m	m³	0.0118		144.71	
Leak	L	mg/m³	0.000		1.00	
Laboratory Result	L _r	mg/m³	0.170		1.00	

		U	ncertainty in Result
Measured Quantities	Units	Run 1	
Sampled Volume (STP)	mg/m³	0.034	
Leak	mg/m³	0.0000	
Laboratory Result	mg/m³	0.1701	

	(Oxygen C
Measured Quantities	Units	Run 1
O₂ Correction Factor	-	N/A
Stack Gas O₂ Content	% v/v	N/A
MU for O₂ Correction	-	N/A
Overall MU For O ₂ Measurement	%	N/A

Combined uncertainty mg/m³ 0	0.173
Expanded uncertainty (95% confidence), without Oxygen Correction mg/m³ 0	0.340
Expanded uncertainty (95% confidence), with Oxygen Correction mg/m³ I	N/A
Expanded uncertainty (95% confidence), estimated with Method Deviations mg/m³ 0	0.340
Reported Uncertainty mg/m³ 0	0.340
Expanded uncertainty (95% confidence), without Oxygen Correction % 2	20.0
Expanded uncertainty (95% confidence), with Oxygen Correction %	N/A
Expanded uncertainty (95% confidence), estimated with Method Deviations % 2	20.0
Reported Uncertainty % 2	20.0

 $NOTE: Uncertainties\ reported\ in\ mg/m^3\ are\ based\ upon\ the\ summation\ of\ all\ Speciated\ VOCs\ Measured.$

PROCESS SOLVENTS: RESULTS SUMMARY

Arran Chemical Company Limited, Athlone A2-3 RTO

Sample Runs

Parameter	Units	Run 1			Mean
	/ 2	0.10			
Toluene	mg/m³	0.13			0.13
Methanol	mg/m³	< 1.69			< 1.69
isopropanol	mg/m³	< 0.34			< 0.34
Methyl tert butyl	mg/m³	1.65			1.65
Acetonitrile	mg/m³	< 1.69			< 1.69
Heptane	mg/m³	< 0.17			< 0.17
Ethanol	mg/m³	< 0.34			< 0.34
2 Methyltetraydofuran	mg/m³	< 0.17			< 0.17
Total	mg/m³	< 6.16			< 6.16

General Sampling Information

Parameter	Value				
Standard	CEN/TS 13649				
Technical Procedure	CAT-TP-16				
Name of Analytical Laboratory	MAR				
Analytical Laboratory's Procedure	WI3042				
ISO 17025 Accredited Analysis?	See Executive Summary				
Date of Sample Analysis	15/05/2023				
Probe Material	Stainless Steel				
Sample Tube Type	Coconut Shell Charcoal				
Dynamic Dilution Employed	No				
Number of Sampling Lines Used	1/1				
Number of Sampling Points Used	1/1				
Sample Point I.D.'s	B1				

FORMAT: Number Used / Number Required

FORMAT: Number Used / Number Required

Reference Conditions

Reference Conditions are: 273K, 101.3kPa, dry gas.

PROCESS SOLVENTS: SAMPLING DETAILS

RUN 1

Parameter	Units	Value
Sampling Times	-	13:00 - 13:30
Sampling Dates	-	13/04/2023
Sampling Device	-	MV
Duration	mins	30
N₂ to Stack Gas Dilution Ratio	: 1	0
Volume Sampled (REF)	m³	0.0118

Where: MV stands for Mass View (Mass Flow Controller Technology)

Parameter	Lab Result (Front) µg	Lab Result (Back) µg	Lab Result (Total) µg	LOD (Front) µg	LOD (Back) µg	LOD (Total) µg	Concentration mg/m³	Reported Concentration (Blank Reviewed) mg/m ³	Reported LOD mg/m ³	Adsorption Efficiency %
Toluene	1.0	< 0.5	1.5	0.5	0.5	1.0	0.127	0.127	0.084	100.0
Methanol	< 10.0	< 10.0	20.0	10.0	10.0	20.0	< 1.688	< 1.688	1.688	100.0
isopropanol	< 2.0	< 2.0	4.0	2.0	2.0	4.0	< 0.338	< 0.338	0.338	100.0
Methyl tert butyl ether	19.0	< 0.5	19.5	0.5	0.5	1.0	1.646	1.646	0.084	100.0
Acetonitrile	< 10.0	< 10.0	20.0	10.0	10.0	20.0	< 1.688	< 1.688	1.688	100.0
Heptane	< 1.0	< 1.0	2.0	1.0	1.0	2.0	< 0.169	< 0.169	0.169	100.0
Ethanol	< 2.0	< 2.0	4.0	2.0	2.0	4.0	< 0.338	< 0.338	0.338	100.0
2 Methyltetraydofuran	< 1.0	< 1.0	2.0	1.0	1.0	2.0	< 0.169	< 0.169	0.169	100.0
Total			73.0			54.0	< 6.162	< 6.162	4.558	-

Reference Conditions are: 273K, 101.3kPa, dry gas.

Tube Lot Number and Unique ID: lot 2000, 0136644652

AG2 Reporting Format	ELV (mg/m³)	Results (mg/m³)	Breakdown of Results	Mass Emission (Kg/h)
Process Solvents	-	> 1.77 and < 6.16	> (sum of 1+4) and < (sum of 1+2+3+4+5+6+7+8)	>0.00304 and <0.01058

Page 85 of 127 Sample Date/s: 13h - 14th April 2023 Industrial Emissions Licence: P0110-03

PROCESS SOLVENTS: SAMPLING DETAILS

BLANK 1

Parameter	Units	Value
Sampling Dates	-	13/04/2023
Sampling Device	-	MV
Average Volume Sampled (REF)	m³	0.0118

Where: MV stands for Mass View (Mass Flow Controller Technology)

Parameter	Lab Result (Front)	Lab Result (Back)	Lab Result (Total)	Concentration mg/m³
	μg	μg	μg	
Toluene	< 0.5	< 0.5	1.0	< 0.084
Methanol	< 10.0	< 10.0	20.0	< 1.688
isopropanol	< 2.0	< 2.0	4.0	< 0.338
Methyl tert butyl ether	< 0.5	< 0.5	1.0	< 0.084
Acetonitrile	< 10.0	< 10.0	20.0	< 1.688
Heptane	< 1.0	< 1.0	2.0	< 0.169
Ethanol	< 2.0	< 2.0	4.0	< 0.338
2 Methyltetraydofuran	< 1.0	< 1.0	2.0	< 0.169
TOTAL			54.0	< 4.558

Reference Conditions are: 273K, 101.3kPa, dry gas.

Tube Lot Number and Unique ID: Lot:2000, 0136631835

Page 86 of 127 Sample Date/s: 13h - 14th April 2023 Industrial Emissions Licence: P0110-03

PROCESS SOLVENTS: QUALITY ASSURANCE

(PAGE 1 OF 2)

Sample Runs

Ambient Temperature Recorded?

Leak Test Results	Units	Run 1
LEAK TEST KESUITS	Units	Kunı
Mean Sampling Rate	l/min	0.4
Pre-Sampling Leak Rate	l/min	0.00
Post-Sampling Leak Rate	l/min	0.00
Allowable Leak Rate	l/min	0.02
Leak Test Acceptable	-	Yes
	Units	2.4
Adsorption Efficiency	Units	Run 1
Toluene	%	100.0
Methanol	%	100.0
isopropanol	%	100.0
Methyl tert butyl ether	%	100.0
Acetonitrile	%	100.0
Heptane	%	100.0
Ethanol	%	100.0
2 Methyltetraydofuran	%	100.0
Allowable Adsorption Efficiency	%	95.0
Adsorption Efficiency Acceptable	-	Yes
	1	
Temperature at Sample Tubes	Units	Run 1
Temperature	°C	32
Allowable Temperature	°C	40
	_	Yes
Temperature Acceptable		165
Temperature Acceptable Test Conditions		163

Yes

Page 87 of 127 Sample Page 7 vac 2

Sample Date/s: 13h - 14th April 2023

Industrial Emissions Licence: P0110-03

PROCESS SOLVENTS: QUALITY ASSURANCE

(PAGE 2 OF 2)

Blank Runs

Leak Test Results	Units	Bla	nk 1
Expected Sampling Rate	l/min	0	1.4
Sampling Leak Rate	l/min	0.	01
Allowable Leak Rate	l/min	0.	02
Leak Test Acceptable	-	Υ	es
Validity of Blank vs ELV	Units	Blank 1	Allowed
Allowable for Toluene	mg/m³	0.1	N/A
Allowable for Methanol	mg/m³	1.7	N/A
Allowable for isopropanol	mg/m³	0.3	N/A
Allowable for Methyl tert butyl ether	mg/m³	0.1	N/A
Allowable for Acetonitrile	mg/m³	1.7	N/A
Allowable for Heptane	mg/m³	0.2	N/A
Allowable for Ethanol	mg/m³	0.3	N/A
Allowable for 2 Methyltetraydofuran	mg/m³	0.2	N/A

Method Deviations

Allowable for TOTAL

Nature of Deviation		Run Number	
(x = deviation applies to the associated run)	1		
There are no deviations associated with the sampling employed.	х		

N/A

mg/m³

4.6

PROCESS SOLVENTS: MEASUREMENT UNCERTAINTY CALCULATIONS

		Value					Stand
Measured Quantities	Symbol	Run 1		s	Symbol	Units	Run 1
Sampled Volume (STP)	V _m	0.0118			uV _m	m³	0.0002
Leak	L	0.00			uL	%	-
Laboratory Result	L _r	10.14			uL _r	%	-

		Unce	ertainty as a Percentage	
Measured Quantities	Units	Run 1		Requirement of Standard
Sampled Volume (STP)	%	2.00		≤2%
Leak	%	0.00		≤5%
Laboratory Result	%	10.14		No Requirement

		Und	ertainty	n Measurement Units		Sensitivity Coefficient
Measured Quantities	Symbol	Units	Run 1		Run 1	
Sampled Volume (STP)	V _m	m³	0.0118		520.16	
Leak	L	mg/m³	0.000		1.00	
Laboratory Result	L _r	mg/m³	0.625		1.00	

		Uncertainty in Result				
Measured Quantities	Units	Run 1				
Sampled Volume (STP)	mg/m³	0.123				
Leak	mg/m³	0.0000				
Laboratory Result	mg/m³	0.6247				

	(Oxygen C
Measured Quantities	Units	Run 1
O ₂ Correction Factor	-	N/A
Stack Gas O₂ Content	% v/v	N/A
MU for O₂ Correction	-	N/A
Overall MU For O ₂ Measurement	%	N/A

Parameter	Units	Run 1
	/ 3	0.627
Combined uncertainty	mg/m³	0.637
Expanded uncertainty (95% confidence), without Oxygen Correction	mg/m³	1.248
Expanded uncertainty (95% confidence), with Oxygen Correction	mg/m³	N/A
Expanded uncertainty (95% confidence), estimated with Method Deviations	mg/m³	1.248
Reported Uncertainty	mg/m³	1.248
Expanded uncertainty (95% confidence), without Oxygen Correction	%	20.3
Expanded uncertainty (95% confidence), with Oxygen Correction	%	N/A
Expanded uncertainty (95% confidence), estimated with Method Deviations	%	20.3
Reported Uncertainty	%	20.3

 $NOTE: Uncertainties\ reported\ in\ mg/m^3\ are\ based\ upon\ the\ summation\ of\ all\ Speciated\ VOCs\ Measured.$

Page 89 of 127 Sample Date/s: 13h - 14th April 2023 Industrial Emissions Licence: P0110-03

TOTAL VOCs (as CARBON): RESULTS SUMMARY

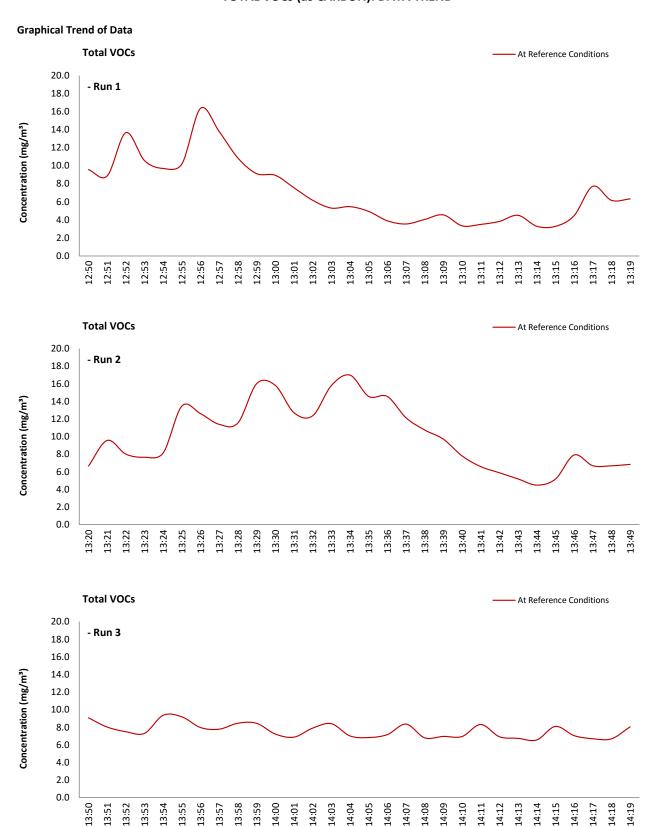
Arran Chemical Company Limited, Athlone A2-3 RTO

Sample Runs

Parameter	Units	Run 1	Run 2	Run 3	Mean
Raw Concentration	ppm	4.37	6.31	5.06	5.25
Concentration	mg/m³	7.12	10.12	7.62	8.29
Uncertainty	±mg/m³	0.46	0.49	0.47	0.47
Mass Emission	g/hr	12.2	17.4	13.1	14.2
Uncertainty	±g/hr	1.1	1.4	1.1	1.2

General Sampling Information

Parameter	Value
Standard	EN 12619:2013
Technical Procedure	CAT-TP-20
Probe Material	Stainless Steel
Filtration Type / Size	0.1μm Glass Fibre
Heated Head Filter Used	Yes
Heated Line Temperature	180°C
Span Gas Type	Propane In Synthetic Air (5 Grade)
Span Gas Reference Number	1.0552
Span Gas Expiry Date	20/01/2028
Span Gas Start Pressure (bar)	120
Gas Cylinder Concentration (ppm)	79.39
Span Gas Set Point (ppm)	79.39
Span Gas Uncertainty (%)	2
Zero Gas Type	Synthetic Air (5 Grade)
Number of Sampling Lines Used	1/1
Number of Sampling Points Used	1/1
Sample Point I.D.'s	A1


FORMAT: Number Used / Number Required FORMAT: Number Used / Number Required

Reference Conditions

Reference Conditions are: 273K, 101.3kPa, dry gas.

TOTAL VOCs (as CARBON): DATA TREND

TOTAL VOCs (as CARBON): SAMPLING DETAILS & QUALITY ASSURANCE

Sampling Details

Parameter	Units	Run 1	Run 2	Run 3
Sampling Times	T -	12:50 - 13:20	13:20 - 13:50	13:50 - 14:20
Sampling Dates	-	13/04/2023	13/04/2023	13/04/2023
Instrument Range	ppm	100	100	100
Span Gas Value	ppm	79.4	79.4	79.4

Quality Assurance

Qua	ality Assurance				
	Zero Drift	Units	Run 1	Run 2	Run 3
	Zero Down Sampling Line (Pre)	ppm	0.00	0.00	0.00
_	Zero Down Sampling Line (Post)	ppm	1.30	1.30	1.30
CAL 1	Zero Drift	ppm	1.30	1.30	1.30
O	Zero Drift	%	1.65	1.65	1.65
	Drift Correction Applied	2-5%	No	No	No
	Allowable Zero Drift	± ppm	3.97	3.97	3.97
	Zero Drift Acceptable	-	Yes	Yes	Yes
	Span Drift	Units	Run 1	Run 2	Run 3
	Span Down Sampling Line (Pre)	ppm	79.00	79.00	79.00
1	Span Down Sampling Line (Post)	ppm	79.60	79.60	79.60
SAL	Span Drift	ppm	0.60	0.60	0.60
J	Span Drift	%	0.76	0.76	0.76
	Drift Correction Applied	2-5%	No	No	No
	Allowable Span Drift	± ppm	3.97	3.97	3.97
	Span Drift Acceptable	-	Yes	Yes	Yes

Units

°C

Method Deviations

Test Conditions

Run Ambient Temperature Range

Nature of Deviation	Run	Nun	nber
(x = deviation applies to the associated run)	1	2	3
There are no deviations associated with the sampling employed.	х	х	х

Run 2

12

Run 3

12

Run 1

11 - 12

Page 92 of 127 Sample Date/s: 13h - 14th April 2023 Industrial Emissions Licence: P0110-03

TOTAL VOCs (as CARBON): MEASUREMENT UNCERTAINTY CALCULATIONS

Performance characteristics	RUN 1	RUN 2	RUN 3	Units
Limit value	20.0	20.0	20.0	mg/m³ (REF)
Allowable MU	15.0	15.0	15.0	%
Measured concentration	7.12	10.12	7.62	mg/m³ (STP, dry)
Range Used	100.0	100.0	100.0	ppm
Range Used [A]	160.6	160.6	160.6	mg/m³
Cal gas conc.	79.4	79.4	79.4	ppm
Conversion	1.61	1.61	1.61	ppm to mg/m ³
MCERTS Range [B]	15.0	15.0	15.0	mg/m³
Lower of [A] or [B]	15.0	15.0	15.0	mg/m³
Cal gas conc.	127.5	127.5	127.5	mg/m³
Doufourne and about the vieties		DUN 1	DUN 2	DUM 2

Performance characteristics	RUN 1	RUN 2	RUN 3	Units
Response time	45	45	45	seconds
Number of readings in measurement	30	30	30	-
Repeatability at zero	2.00	2.00	2.00	% full scale
Repeatability at span level	0.00	0.00	0.00	% full scale
Deviation from linearity	0.42	0.42	0.42	% of value
Zero drift	1.65	1.65	1.65	% full scale
Span drift	0.76	0.76	0.76	% full scale
Volume or pressure flow dependence	1.60	1.60	1.60	% of full scale
Atmospheric pressure dependence	0.30	0.30	0.30	% of value/kPa
Ambient temperature dependence	1.40	1.40	1.40	% full scale/10K
Combined interference	0.45	0.45	0.45	% range
Dependence on voltage	0.50	0.50	0.50	% full scale/10V
Losses in the line (leak)	0.50	0.50	0.50	% of value
Uncertainty of calibration gas	2.00	2.00	2.00	% of value

Performance characteristic	RUN 1	RUN 2	RUN 3	Units
Standard deviation of repeatability at zero	use rep at span	use rep at span	use rep at span	mg/m³
Standard deviation of repeatability at span level	0.00	0.00	0.00	mg/m³
Lack of fit	0.04	0.04	0.04	mg/m³
Drift	0.00	0.00	0.00	mg/m³
Volume or pressure flow dependence	0.00	0.00	0.00	mg/m³
Atmospheric pressure dependence	0.01	0.01	0.01	mg/m³
Ambient temperature dependence	0.20	0.20	0.20	mg/m³
Combined interference (from MCERTS Certificate)	0.04	0.04	0.04	mg/m³
Dependence on voltage	0.06	0.06	0.06	mg/m³
Losses in the line (leak)	0.02	0.03	0.02	mg/m³
Uncertainty of calibration gas	0.08	0.12	0.09	mg/m³

			RUN 1	RUN 2	RUN 3	Units
Measurement uncertainty		Result	7.12	10.12	7.62	mg/m³
Combined uncertainty			0.24	0.25	0.24	mg/m³
Expanded uncertainty	k =	1.96	0.46	0.49	0.47	mg/m³
Uncertainty corrected to std conds. (O ₂)			0.46	0.49	0.47	mg/m³ (REF)

	RUN 1	RUN 2	RUN 3	Units
Expanded uncertainty (no O ₂) - at 95% Confidence	6.51	4.87	6.14	% of Value
Expanded uncertainty (no O ₂) - at 95% Confidence	2.32	2.46	2.34	% at ELV
Overall Allowable uncertainty (no O ₂) - at 95% Confidence	15.0	15.0	15.0	% at ELV
Result of Compliance with Uncertainty Requirement	COMPLIANT	COMPLIANT	COMPLIANT	-

	RUN 1	RUN 2	RUN 3	Units
Expanded uncertainty (with O ₂) - at 95% Confidence	N/A	N/A	N/A	% of Value
Expanded uncertainty (with O ₂) - at 95% Confidence	N/A	N/A	N/A	% at ELV
Overall Allowable uncertainty (with O ₂) - at 95% Confidence	N/A	N/A	N/A	% at ELV
Result of Compliance with Uncertainty Requirement	N/A	N/A	N/A	-

Requirement for SRM is that Uncertainty should be <15% of the value at the ELV, on a dry gas basis, or if O_2 correction is applied less than 15% + the uncertainty associated with the O_2 correction (using sqrt of sum squares to add uncertainty components).

OXIDES OF NITROGEN (as NO₂): RESULTS SUMMARY

Arran Chemical Company Limited, Athlone A2-3 RTO

Sample Runs

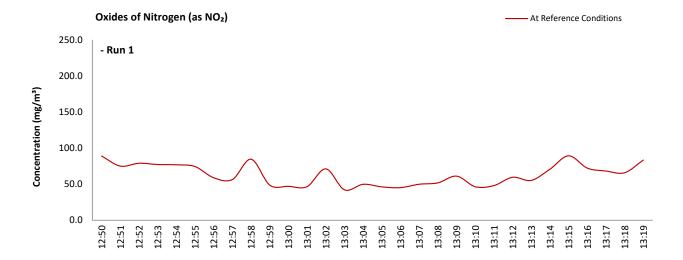
Parameter	Units	Run 1
Raw Concentration	ppm	30.70
Concentration	mg/m³	63.00
Uncertainty	±mg/m³	2.92
Mass Emission	g/hr	108.1
Uncertainty	±g/hr	8.4

General Sampling Information

Parameter	Value	
Standard	EN 14792	
Technical Procedure	CAT-TP-39	
Probe Material	Stainless Steel	
Filtration Type / Size	0.1μm Glass Fibre	
Heated Head Filter Used	Yes	
Heated Line Temperature	180°C	
Date & Result of Last Converter Check	21/02/2023 - 96.7%	
Span Gas Type	Nitrogen Monoxide	
Span Gas Reference Number	12.0519	_
Span Gas Expiry Date	24/03/2025	
Span Gas Start Pressure (bar)	150	
Gas Cylinder Concentration (ppm)	412.8	NOTE: Dilution performed to achieve correct s
Span Gas Uncertainty (%)	2	
Zero Gas Type	Nitrogen (5 Grade)	
Number of Sampling Lines Used	1/1	FORMAT: Number Used / Number Required
Number of Sampling Points Used	1/1	FORMAT: Number Used / Number Required
Sample Point I.D.'s	A1	

Reference Conditions

Reference Conditions are: 273K, 101.3kPa, dry gas.


Page 94 of 127 Sample Date/s: 13h - 14th April 2023 Industrial Emissions Licence: P0110-03

span value

OXIDES OF NITROGEN (as NO₂): DATA TREND

Graphical Trend of Data

OXIDES OF NITROGEN (as NO₂): SAMPLING DETAILS & QUALITY ASSURANCE

Sampling Details

Parameter	Units	Run 1
Sampling Times	-	12:50 - 13:20
Sampling Dates	-	13/04/2023
Instrument Range	ppm	250
Span Gas Value	ppm	121.8

Quality Assurance

ųи	danty Assurance		
	Conditioning Unit Temperature	Units	Run 1
	Average Temperature	°C	N/A
	Allowable Temperature	<°C	N/A
	Temperature Acceptable	-	N/A
	Zero Drift	Units	Run 1
	Zero at Analyser (Pre)	ppm	0.00
۱,	Zero at Analyser (Post)	ppm	0.10
동	Zero Drift	ppm	0.10
١	Zero Drift	%	0.08
	Drift Correction Applied	2-5%	No
	Allowable Zero Drift	± %	5.00
	Zero Drift Acceptable	-	Yes
	Span Drift	Units	Run 1
	Span at Analyser (Pre)	ppm	121.82
1	Span at Analyser (Post)	ppm	123.20
됭	Span Drift	ppm	1.38
0	Zero Adj. Span Drift	%	1.05
	Drift Correction Applied	2-5%	No
	Allowable Span Drift	± %	5.00
	Span Drift Acceptable	-	Yes
	Test Conditions	Units	Run 1
	Run Ambient Temperature Range	°C	11 - 12

Method Deviations

Nature of Deviation	R	un Number
(x = deviation applies to the associated run)	ation applies to the associated run)	
There are no deviations associated with the sampling employed.	х	(

Page 96 of 127 Sample Date/s: 13h - 14th April 2023 Industrial Emissions Licence: P0110-03

OXIDES OF NITROGEN (as NO₂): MEASUREMENT UNCERTAINTY CALCULATIONS

Performance characteristics Limit value Allowable MU Measured concentration	F			
Allowable MU	RUN 1	-	Units	
	250.0	-	mg/m³ (REF)	
Measured concentration	10.0	-	%	
	63.00	-	mg/m³ (STP, dry)	
Ratio NO / NO ₂	5	-	%	
Range Used	250.0		ppm	
Range Used [A]	513.1	_	mg/m³	
Cal gas conc.	121.8	_	ppm	
Conversion	2.05	_	ppm to mg/m³	
MCERTS Range [B]	205.0	_	mg/m³	
Lower of [A] or [B]	205.0		mg/m³	
Cal gas conc.	250.0		mg/m³	
Performance characteristics		RUN 1		Units
Response time		31		seconds
Number of readings in measurement		30		-
Repeatability at zero		0.00		% full scale
Repeatability at span level		0.10		% full scale
		0.39		% of value
Deviation from linearity				% full scale
Zero drift		0.08		
Span drift		1.05		% full scale
Volume or pressure flow dependence		0.10		% of full scale
Atmospheric pressure dependence		0.10		% of value/kPa
Ambient temperature dependence		0.04		% full scale/10K
Combined interference		0.63		% range
Dependence on voltage		-0.23		% full scale/10V
Converter efficiency		96.7		%
Losses in the line (leak)		0.84		% of value
Uncertainty of calibration gas blending		1.40		% of value
Uncertainty of calibration gas		2.00		% of value
Performance characteristic		RUN 1		Units
Standard deviation of repeatability at zero		use rep at span		mg/m³
Standard deviation of repeatability at span level		0.02		mg/m³
Lack of fit		0.46		mg/m³
Drift		0.00		mg/m³
Volume or pressure flow dependence		0.00		mg/m³
Atmospheric pressure dependence		0.06		mg/m³
Ambient temperature dependence		0.01		mg/m³
Combined interference (from MCERTS Certificate)		0.75		mg/m³
Dependence on voltage		-0.03		mg/m³
Converter efficiency		0.06		mg/m³
TOTIVE LEI EIIIGEIGV		0.30		mg/m³
·		0.51		mg/m³
Losses in the line (leak)				O,
Losses in the line (leak) Uncertainty of calibration gas blending		0.73		mg/m³
Losses in the line (leak)		0.73		mg/m³
Losses in the line (leak) Uncertainty of calibration gas blending Uncertainty of calibration gas		RUN 1		Units
Losses in the line (leak) Uncertainty of calibration gas blending Uncertainty of calibration gas Measurement uncertainty	Result	RUN 1 63.00		Units mg/m³
Losses in the line (leak) Uncertainty of calibration gas blending Uncertainty of calibration gas	Result	RUN 1		Units mg/m³ mg/m³
Losses in the line (leak) Uncertainty of calibration gas blending Uncertainty of calibration gas Measurement uncertainty	Result	RUN 1 63.00		Units mg/m³
Losses in the line (leak) Uncertainty of calibration gas blending Uncertainty of calibration gas Measurement uncertainty Combined uncertainty		RUN 1 63.00 1.49		Units mg/m³ mg/m³
Losses in the line (leak) Uncertainty of calibration gas blending Uncertainty of calibration gas Measurement uncertainty Combined uncertainty Expanded uncertainty k =		RUN 1 63.00 1.49 2.92 2.92		Units mg/m³ mg/m³ mg/m³ mg/m³ (REF)
Losses in the line (leak) Uncertainty of calibration gas blending Uncertainty of calibration gas Measurement uncertainty Combined uncertainty Expanded uncertainty Uncertainty k = Uncertainty corrected to std conds. (O2)		RUN 1 63.00 1.49 2.92 2.92 RUN 1		Units mg/m³ mg/m³ mg/m³ mg/m³ (REF)
Losses in the line (leak) Uncertainty of calibration gas blending Uncertainty of calibration gas Measurement uncertainty Combined uncertainty Expanded uncertainty Uncertainty corrected to std conds. (O ₂) Expanded uncertainty (no O ₂) - at 95% Confidence		RUN 1 63.00 1.49 2.92 2.92 RUN 1 4.63		Units mg/m³ mg/m³ mg/m³ mg/m³ (REF) Units % of Value
Losses in the line (leak) Uncertainty of calibration gas blending Uncertainty of calibration gas Measurement uncertainty Combined uncertainty Expanded uncertainty Uncertainty corrected to std conds. (O2) Expanded uncertainty (no O2) - at 95% Confidence Expanded uncertainty (no O2) - at 95% Confidence		RUN 1 63.00 1.49 2.92 2.92 RUN 1 4.63 1.17		Units mg/m³ mg/m³ mg/m³ mg/m³ mg/m³ (REF) Units % of Value % at ELV
Losses in the line (leak) Uncertainty of calibration gas blending Uncertainty of calibration gas Measurement uncertainty Combined uncertainty Expanded uncertainty Uncertainty corrected to std conds. (O2) Expanded uncertainty (no O2) - at 95% Confidence Expanded uncertainty (no O2) - at 95% Confidence Overall Allowable uncertainty (no O2) - at 95% Confidence		RUN 1 63.00 1.49 2.92 2.92 RUN 1 4.63 1.17 10.0		Units mg/m³ mg/m³ mg/m³ mg/m³ (REF) Units % of Value
Losses in the line (leak) Uncertainty of calibration gas blending Uncertainty of calibration gas Measurement uncertainty Combined uncertainty Expanded uncertainty Uncertainty corrected to std conds. (O2) Expanded uncertainty (no O2) - at 95% Confidence Expanded uncertainty (no O2) - at 95% Confidence		RUN 1 63.00 1.49 2.92 2.92 RUN 1 4.63 1.17		Units mg/m³ mg/m³ mg/m³ mg/m³ mg/m³ (REF) Units % of Value % at ELV
Losses in the line (leak) Uncertainty of calibration gas blending Uncertainty of calibration gas Measurement uncertainty Combined uncertainty Expanded uncertainty Uncertainty corrected to std conds. (O2) Expanded uncertainty (no O2) - at 95% Confidence Expanded uncertainty (no O2) - at 95% Confidence Overall Allowable uncertainty (no O2) - at 95% Confidence		RUN 1 63.00 1.49 2.92 2.92 RUN 1 4.63 1.17 10.0		Units mg/m³ mg/m³ mg/m³ mg/m³ mg/m³ (REF) Units % of Value % at ELV
Losses in the line (leak) Uncertainty of calibration gas blending Uncertainty of calibration gas Measurement uncertainty Combined uncertainty Expanded uncertainty Uncertainty corrected to std conds. (O2) Expanded uncertainty (no O2) - at 95% Confidence Expanded uncertainty (no O2) - at 95% Confidence Overall Allowable uncertainty (no O2) - at 95% Confidence		RUN 1 63.00 1.49 2.92 2.92 RUN 1 4.63 1.17 10.0 COMPLIANT		Units mg/m³ mg/m³ mg/m³ mg/m³ (REF) Units % of Value % at ELV % at ELV
Losses in the line (leak) Uncertainty of calibration gas blending Uncertainty of calibration gas Measurement uncertainty Combined uncertainty Expanded uncertainty Uncertainty corrected to std conds. (O ₂) Expanded uncertainty (no O ₂) - at 95% Confidence Expanded uncertainty (no O ₂) - at 95% Confidence Overall Allowable uncertainty (no O ₂) - at 95% Confidence Result of Compliance with Uncertainty Requirement		RUN 1 63.00 1.49 2.92 2.92 RUN 1 4.63 1.17 10.0 COMPLIANT RUN 1		Units mg/m³ mg/m³ mg/m³ mg/m³ (REF) Units % of Value % at ELV % at ELV -
Losses in the line (leak) Uncertainty of calibration gas blending Uncertainty of calibration gas Measurement uncertainty Combined uncertainty Expanded uncertainty Uncertainty corrected to std conds. (O ₂) Expanded uncertainty (no O ₂) - at 95% Confidence Expanded uncertainty (no O ₂) - at 95% Confidence Overall Allowable uncertainty (no O ₂) - at 95% Confidence Result of Compliance with Uncertainty Requirement Expanded uncertainty (with O ₂) - at 95% Confidence		RUN 1 63.00 1.49 2.92 2.92 RUN 1 4.63 1.17 10.0 COMPLIANT RUN 1 N/A		Units mg/m³ mg/m³ mg/m³ mg/m³ (REF) Units % of Value % at ELV % at ELV - Units % of Value

Requirement for SRM is that Uncertainty should be <10% of the value at the ELV, on a dry gas basis, or if O_2 correction is applied less than 10% + the uncertainty associated with the O_2 correction (using sqrt of sum squares to add uncertainty components).

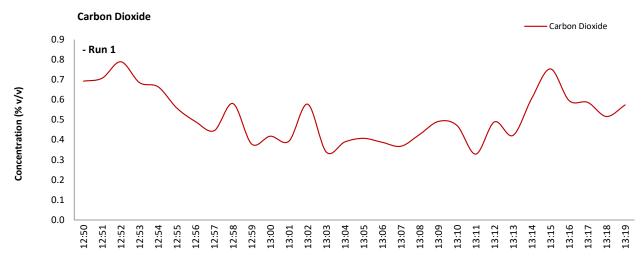
CARBON DIOXIDE: RESULTS SUMMARY

Arran Chemical Company Limited, Athlone A2-3 RTO

Sample Runs

Parameter	Units	Run 1	Mean
Concentration	% v/v	0.52	0.52
Uncertainty	±% v/v	0.23	0.23

General Sampling Information


Parameter	Value
Standard	CEN/TS 17405
Technical Procedure	CAT-TP-39
Probe Material	Stainless Steel
Filtration Type / Size	0.1μm Glass Fibre
Heated Head Filter Used	Yes
Heated Line Temperature	180°C
Span Gas Type	Carbon Dioxide
Span Gas Reference Number	6.0067
Span Gas Expiry Date	19/05/2026
Span Gas Start Pressure (bar)	100
Gas Cylinder Concentration (% v/v)	16.25
Span Gas Uncertainty (%)	2.00
Zero Gas Type	Nitrogen (5 Grade)
Number of Sampling Lines Used	1/1
Number of Sampling Points Used	1/1
Sample Point I.D.'s	A1

FORMAT: Number Used / Number Required FORMAT: Number Used / Number Required

CARBON DIOXIDE: DATA TREND

Graphical Trend of Data

CARBON DIOXIDE: SAMPLING DETAILS & QUALITY ASSURANCE

Sampling Details

Parameter	Units	Run 1
Sampling Times	-	12:50 - 13:20
Sampling Dates	-	13/04/2023
Instrument Range	% v/v	20
Span Gas Value	% v/v	16.3

Quality Assurance

-,	uality Assurance		
	Conditioning Unit Temperature	Units	Run 1
	Average Temperature	°C	N/A
	Allowable Temperature	<°C	N/A
	Temperature Acceptable	-	N/A
	Zero Drift	Units	Run 1
	Zero Down Sampling Line (Pre)	% v/v	0.00
_	Zero Down Sampling Line (Post)	% v/v	0.02
통	Zero Drift	% v/v	0.02
"	Zero Drift	%	0.12
	Drift Correction Applied	2-5%	No
	Allowable Zero Drift	± %	5.00
	Zero Drift Acceptable	-	Yes
	Span Drift	Units	Run 1
	Span Down Sampling Line (Pre)	% v/v	16.15
_	Span Down Sampling Line (Post)	% v/v	16.21
8	Span Drift	% v/v	0.06
0	Zero Adj. Span Drift	%	0.25
	Drift Correction Applied	2-5%	No
	Allowable Span Drift	± %	5.00
	Span Drift Acceptable	-	Yes
	Test Conditions	Units	Run 1
	Run Ambient Temperature Range	°C	11 - 12

Method Deviations

Nature of Deviation		Run	Number
(x = deviation applies to the associated run)	on applies to the associated run)		
There are no deviations associated with the sampling	employed.	х	

CARBON DIOXIDE: MEASUREMENT UNCERTAINTY CALCULATIONS

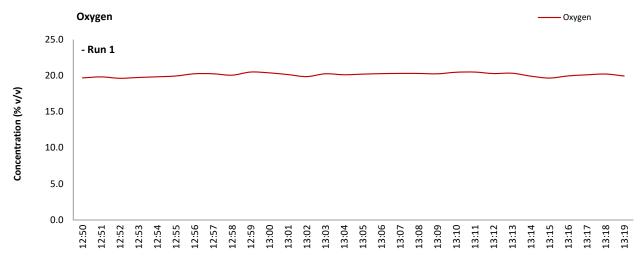
Performance characteristics	RUN 1		Units	
Limit value	N/A		%vol	
Allowable MU	25.0		%	
Measured concentration	0.52		%vol	
Range Used	20.0		%vol	
Cal gas conc.	16.3		%vol	
Performance characteristics		RUN 1		Units
Response time		29		seconds
Number of readings in measurement		30		-
Repeatability at zero		0.00		% full scale
Repeatability at span level		0.10		% full scale
Deviation from linearity		0.85		% of value
Zero drift		0.12		% full scale
Span drift		0.25		% full scale
Volume or pressure flow dependence		0.10		% of full scale
Atmospheric pressure dependence		0.30		% of value/kPa
Ambient temperature dependence		-0.20		% full scale/10K
Combined interference		0.00		% range
Dependence on voltage		0.40		% full scale/10V
Losses in the line (leak)		0.62		% of value
Uncertainty of calibration gas		2.00		% of value
Performance characteristic		RUN 1		Units
Standard deviation of repeatability at zero		use rep at span		%vol
Standard deviation of repeatability at span level		0.02		%vol
Lack of fit		0.10		%vol
Drift		0.00		%vol
Volume or pressure flow dependence		0.00		%vol
Atmospheric pressure dependence		0.02		%vol
Ambient temperature dependence		-0.03		%vol
Combined interference (from MCERTS Certificate)		0.00		%vol
Dependence on voltage		0.05		%vol
Losses in the line (leak)		0.00		%vol
Uncertainty of calibration gas		0.01		%vol
		RUN 1		Units
Measurement uncertainty	Result	0.52		%vol
Combined uncertainty		0.12		%vol
Expanded uncertainty k =	1.96	0.23		%vol
		RUN 1		Units

OXYGEN: RESULTS SUMMARY

Arran Chemical Company Limited, Athlone A2-3 RTO

Sample Runs

Parameter	Units	Run 1	Mean
Concentration	% v/v	20.11	20.11
Uncertainty	±% v/v	0.47	0.47


General Sampling Information

Parameter	Value	
Standard	EN 14789	_
Technical Procedure	CAT-TP-39	
Probe Material	Stainless Steel	=
Filtration Type / Size	0.1μm Glass Fibre	
Heated Head Filter Used	Yes	
Heated Line Temperature	180°C	
Span Gas Type	Synthetic Air (5 Grade)	_
Span Gas Reference Number	11.0533	
Span Gas Expiry Date	10/06/2027	
Span Gas Start Pressure (bar)	150	
Gas Cylinder Concentration (% v/v)	21.09	NOTE: Dilution performed to achieve correct span value
Span Gas Uncertainty (%)	2	
Zero Gas Type	Nitrogen (5 Grade)	
Number of Sampling Lines Used	1/1	FORMAT: Number Used / Number Required
Number of Sampling Points Used	1/1	FORMAT: Number Used / Number Required
Sample Point I.D.'s	A1	

OXYGEN: DATA TREND

Graphical Trend of Data

OXYGEN: SAMPLING DETAILS & QUALITY ASSURANCE

Sampling Details

Parameter	Units	Run 1
Sampling Times	-	12:50 - 13:20
Sampling Dates	-	13/04/2023
Instrument Range	% v/v	25.0
Span Gas Value	% v/v	21.1

Quality Assurance

	anty Assurance		
	Conditioning Unit Temperature	Units	Run 1
	Average Temperature	°C	N/A
	Allowable Temperature	< °C	N/A
	Temperature Acceptable	-	N/A
	Zero Drift	Units	Run 1
	Zero at Analyser (Pre)	% v/v	0.00
-	Zero at Analyser (Post)	% v/v	-0.08
8	Zero Drift	% v/v	-0.08
"	Zero Drift	%	0.38
	Drift Correction Applied	2-5%	No
	Zero Drift Acceptable	-	Yes
	Span Drift	Units	Run 1
	Span at Analyser (Pre)	% v/v	21.09
_	Span at Analyser (Post)	% v/v	20.92
1	Span Drift	% v/v	-0.17
"	Zero Adj. Span Drift	%	0.43
	Drift Correction Applied	2-5%	No
	Allowable Span Drift	± %	5.00
	Span Drift Acceptable	-	Yes
	Test Conditions	Units	Run 1
	Run Ambient Temperature Range	°C	11 - 12

Method Deviations

Nature of Deviation			
(x = deviation applies to the associated run)	1		
There are no deviations associated with the sampling employed.	х		

OXYGEN: MEASUREMENT UNCERTAINTY CALCULATIONS

Performance characteristics	RUN 1		Units			
Limit value	N/A		%vol			
Allowable MU	6.0		%			
Measured concentration	20.11		%vol			
Range Used	25.0		%vol			
Cal gas conc.	21.1		%vol			
Performance characteristics		RUN 1		Units		
Response time		41		seconds		
Number of readings in measurement		30		-		
Repeatability at zero		0.02		% full scale		
Repeatability at span level		0.02		% full scale		
Deviation from linearity		0.04		% of value		
Zero drift		-0.38		% full scale		
Span drift		-0.43		% full scale		
Volume or pressure flow dependence		0.10		% of full scale		
Atmospheric pressure dependence		0.19		% of value/kPa		
Ambient temperature dependence		-0.21		% full scale/10K		
Combined interference		0.00		% range		
Dependence on voltage		0.02		% full scale/10V		
Losses in the line (leak)		0.43		% of value		
Uncertainty of calibration gas		2.00		% of value		
Performance characteristic		RUN 1		Units		
Standard deviation of repeatability at zero		use rep at span		%vol		
Standard deviation of repeatability at span level	0.00		%vol			
Lack of fit		0.01		%vol		
Drift		0.00		%vol		
Volume or pressure flow dependence		0.00		%vol		
Atmospheric pressure dependence		0.01		%vol		
Ambient temperature dependence		-0.03		%vol		
Combined interference (from MCERTS Certificate)		0.00		%vol		
Dependence on voltage		0.00		%vol		
Losses in the line (leak)		0.05		%vol		
Uncertainty of calibration gas		0.23		%vol		
		RUN 1		Units		
Measurement uncertainty	Result	20.11		%vol		
Combined uncertainty		0.24		%vol		
Expanded uncertainty k =	1.96	0.47		%vol		
·	-	RUN 1		Units		
		1.014.1				
Expanded uncertainty (no O ₂) - at 95% Confidence		2.34		% of Value		

Requirement for SRM is that Uncertainty should be 0.3% vol absolute or 6% relative whichever is the lower, on a dry gas basis. Source, EN 14789.

VERSION HISTORY

Version Number	Record of changes made within this version of the document
V1	The original document issued to the client
V2	Removed Blank pages from the report

Industrial Emissions Licence: P0110-03

D02 EK8

Element Materials Technology

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

Element Unit D8, North City Business Park North Road Finglas Dublin 11 Ireland

Dónal Ó Faogáin Attention:

Date: 15th May, 2023

EMT05627 Your reference :

Test Report 23/6655 Batch 1 Our reference :

Dublin Location:

Date samples received : 28th April, 2023

Status: Final Report

1 Issue:

Two samples were received for analysis on 28th April, 2023 of which two were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Phil Sommerton BSc Senior Project Manager

Please include all sections of this report if it is reproduced

1 of 8

Element Materials Technology

Client Name: Element EMT05627 Reference:

Sample Date: 13 Apr 2023 28 Apr 2023 Date of Receipt: Location: Dublin Date Analysed: 15 May 2023 Contact: Dónal Ó Faogáin

1.1 EMT05627-B|A2-3 Sample ID:

Depth:

EMT Job No: 23/6655 EMT Sample No: Matrix: Stack

Method: TM201/PM137 Dioxins, Furans and PCBs in Stationary Source Emissions

ANALYSIS OF PCDDs and PCDFs

Q : Qualifiers Key sv Indicates surrogate recovery outside performance criteria LOD Limit of Detection Indicates value exceeds calibration range ISO 17025 (UKAS) MCERTS accredited

	Compound	Q	Result	LOD	I-TEFs	TEQ Lower Bound	TEQ Upper Bound	% Recovery
#M	2378-TCDD		<0.00043	0.00043	1	0.00000	0.00043	84
#M					1	0.00000		74
#M	123478-HxCDD		<0.00108	0.00108	0.1	0.00000	0.00011	74
#M	123678-HxCDD		<0.00106	0.00106	0.1	0.00000	0.00011	69
#M	123789-HxCDD		<0.00109	0.00109	0.1	0.00000	0.00011	
#M	1234678-HpCDD		0.00440	0.00070	0.01	0.00004	0.00004	74
#M	OCDD		0.02395	0.00092	0.0003	0.00001	0.00001	86
#M	2378-TCDF		<0.00119	0.00119	0.1	0.00000	0.00012	63
#M	12378-PCDF		<0.00089	0.00089	0.03	0.00000	0.00003	103
#M	23478-PCDF		<0.00090	0.00090	0.3	0.00000	0.00027	68
#M	123478-HxCDF		<0.00055	0.00055	0.1	0.00000	0.00006	81
#M	123678-HxCDF		<0.00058	0.00058	0.1	0.00000	0.00006	75
#M	234678-HxCDF		<0.00075	0.00075	0.1	0.00000	0.00007	64
#M	123789-HxCDF		<0.00082	0.00082	0.1	0.00000	0.00008	101
#M	1234678-HpCDF		0.00140	0.00038	0.01	0.00001	0.00001	69
#M	1234789-HpCDF		<0.00044	0.00044	0.01	0.00000	0.00000	106
#M	OCDF		0.00273	0.00057	0.0003	0.00000	0.00000	78
	Sum - TEQ					0.00006	0.00279	
	#M #	#M 2378-TCDD #M 12378-PCDD #M 123478-HxCDD #M 123678-HxCDD #M 123789-HxCDD #M 1234678-HpCDD #M 2378-TCDF #M 2378-TCDF #M 12378-PCDF #M 123478-HxCDF #M 123678-HxCDF #M 123678-HxCDF #M 123678-HxCDF #M 123789-HxCDF #M 1234678-HpCDF #M 1234678-HpCDF #M 1234678-HpCDF #M 1234789-HpCDF #M 1234789-HpCDF	#M 2378-TCDD #M 12378-PCDD #M 12378-PCDD #M 123678-HxCDD #M 123789-HxCDD #M 0CDD #M 2378-TCDF #M 23478-PCDF #M 1234678-HyCDF #M 1234678-HyCDF #M 123478-PCDF #M 123478-HyCDF #M 123678-HyCDF #M 123678-HyCDF #M 123678-HyCDF #M 123789-HyCDF #M 123789-HyCDF #M 1234678-HyCDF #M 1234678-HpCDF #M 1234789-HpCDF #M 1234789-HpCDF	#M 2378-TCDD	#M 2378-TCDD	#M 2378-TCDD	#M 2378-TCDD	#M 2378-TCDD

Upper-Bound: 'Upper-bound' means the concept which requires using the limit of quantification for the contribution of each non-quantified congen

Lower-Bound: 'Lower-bound' means the concept which requires using zero for the contribution of each non-quantified congener

TEQ: Toxic Equivalent Value TEF: Toxic Equivalent Factor

Element Materials Technology

Client Name: Element Reference: EMT05627

Location: Dublin
Contact: Dónal Ó Faogáin

Sample ID: 1.2 EMT05627-R1|A2-3

Depth:

EMT Job No: 23/6655 EMT Sample No: 2 Matrix: Stack

Method: TM201/PM137 Dioxins, Furans and PCBs in Stationary Source Emissions

ANALYSIS OF PCDDs and PCDFs

Sample Date:

Date of Receipt:

Date Analysed:

13 Apr 2023

28 Apr 2023

15 May 2023

 Q: Qualifiers
 Key

 SV
 Indicates surrogate recovery outside performance criteria
 LOD
 Limit of Detection

 >>
 Indicates value exceeds calibration range
 # ISO 17025 (UKAS)

 M
 MCERTS accredited

CAS No		Compound	Q	Result	LOD	I-TEFs	TEQ Lower Bound	TEQ Upper Bound	% Recovery
1746-01-6	#M	2378-TCDD		<0.00055	0.00055	1	0.00000	0.00055	94
40321-76-4	#M	12378-PCDD		<0.00178	0.00178	1	0.00000	0.00178	78
39227-28-6	#M	123478-HxCDD		<0.00114	0.00114	0.1	0.00000	0.00011	79
57653-85-7	#M	123678-HxCDD		<0.00119	0.00119	0.1	0.00000	0.00012	75
19408-74-3	#M	123789-HxCDD		<0.00122	0.00122	0.1	0.00000	0.00012	
35822-46-9	#M	1234678-HpCDD		0.00600	0.00073	0.01	0.00006	0.00006	76
3268-87-9	#M	OCDD		0.02099	0.00131	0.0003	0.00001	0.00001	86
51207-31-9	#M	2378-TCDF		<0.00136	0.00136	0.1	0.00000	0.00014	69
57117-41-6	#M	12378-PCDF		<0.00122	0.00122	0.03	0.00000	0.00004	100
57117-31-4	#M	23478-PCDF		<0.00123	0.00123	0.3	0.00000	0.00037	70
70648-26-9	#M	123478-HxCDF		<0.00089	0.00089	0.1	0.00000	0.00009	80
57117-44-9	#M	123678-HxCDF		<0.00095	0.00095	0.1	0.00000	0.00010	75
60851-34-5	#M	234678-HxCDF		<0.00130	0.00130	0.1	0.00000	0.00013	62
72918-21-9	#M	123789-HxCDF		<0.00143	0.00143	0.1	0.00000	0.00014	101
67562-39-4	#M	1234678-HpCDF		0.00503	0.00042	0.01	0.00005	0.00005	75
55673-89-7	#M	1234789-HpCDF		0.00084	0.00049	0.01	0.00001	0.00001	97
39001-02-0	#M	OCDF		0.00474	0.00058	0.0003	0.00000	0.00000	77
		Sum - TEQ					0.00013	0.00382	

Upper-Bound: 'Upper-bound' means the concept which requires using the limit of quantification for the contribution of each non-quantified congener

Lower-Bound: 'Lower-bound' means the concept which requires using zero for the contribution of each non-quantified congener

TEQ: Toxic Equivalent Value TEF: Toxic Equivalent Factor

Element Materials Technology

Notification of Deviating Samples

Client Name: Element Matrix : Stack

Reference: EMT05627 Location: Dublin

Contact: Dónal Ó Faogáin

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
23/6655	1	1.1 EMT05627-B A2-3		1	DIOXIN_FURAN	Sample holding time exceeded
23/6655	1	1.2 EMT05627-R1 A2-3		2	DIOXIN_FURAN	Sample holding time exceeded

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 23/6655

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C. Ash samples are dried at 37°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

EMT Job No.: 23/6655

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation. Laboratory records are kept for a period of no less than 6 years.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

Customer Provided Information

Sample ID and depth is information provided by the customer.

ABBREVIATIONS and ACRONYMS USED

ND	None Detected (usually refers to VOC and/SVOC TICs).
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above quantitative calibration range. The result should be considered the minimum value and is indicative only. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
CO	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
TB	Trip Blank Sample

EMT Job No: 23/6655

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM201	Dioxins, Furans and PCBs in Stationary Source Emissions	PM137	Extraction and clean-up of Dioxins (PCDDs), Furans (PCDFs) and dioxin-like PCBs using accelerator solvent extractor and clean up system			AR	
TM201	Dioxins, Furans and PCBs in Stationary Source Emissions	PM137	Extraction and clean-up of Dioxins (PCDDs), Furans (PCDFs) and dioxin-like PCBs using accelerator solvent extractor and clean up system	Yes	Yes	AR	

Job Number:	ET05627					
Date:	13/04/2023					
Completed By:	Donal O Faogain					

Location / Site:	EPA Arran Chemicals	Stack / Work Area:	RTO/CAU
Fire Alarm	Yes	Platform Inspection? (details)	
Chemical Alarm	No	Stack Pressure (+ve/-ve)	Pos
Intrinsically Safe Area	Yes	Stack Gas Composition	Combustion Gas
Hygiene Regulations	Yes	Emergency Procedure	Follow site rules

Who / what is at risk: W = Worker, P = Passers by / visitors, A = Assets, E = Environment

Activity	Hazard	Who is at risk?	Risk severity as found			Control measures	Risk sever		•	
		riskr	L	S	R		L	S	R	
General Site Hazards	Van Access	W, P, A	2	3	• Follow site routes • No mobile phone use whilst driving • Follow site speed limits • Hazard perception training completed		1	3	3	
General Site Hazards	Pedestrian Access	W	2	2	High Viz vest Safety Boots		1	2	2	
General Site Hazards	Noise	W	2	4	8	Ear defenders available as required Limit time in noisy area as far as possible		4	4	
General Site Hazards	Site Traffic	W, A	2	3	6	High viz vests Stick to Walkways Don't use mobile phones whilst walking		3	6	
Unloading Vehicle	Manual handling	W, A	2	3	6	Sensible packing of vans Gloves worn during all manual handling Steel toe cap boots worn at all times Trolley for carrying on unobstructed routes	2	3	6	
Work Location Assessment	Permanent platform	W, P, A	2	3	6	Platform inspection record available Acceptable and safe platform size Pre-use check Boots and Gloves worn Consideration of weather - wind and rain		3	6	
Work Location Assessment	Ground Level	W, P	2	2	4	Consideration to passers by - barrier area off	1	2	2	
Work Location Assessment	Outdoors	W, P, A	2	2	4	Consideration to passers by - barrier area off	1	2	2	
Work at Height	Falling Objects	W, P, A	2	3	6	Tool Lanyards used Tool Mats used Area under stack cordoned off with signage Hard Hats worn		3	3	

Activity	Hazard	Who is at risk?	Risk severity as found			Control measures		Risk severity after controls		
		riskr	L	S	R		L	S	R	
Access Provision	Stairs	Р	2	3	6	Handrails used Safety Boots and Gloves worn	1	3	3	
Access Provision	Rope Lifts	W	2	2	4	SW for Lifting followed rea Cordoned off Varning Signs out loves worn		2	4	
Breaking into ducts	Positive pressure	W, P, A	2	2	4	Establish pressure and temperature of stack Open from side Seal at all possible times Safety Glasses and Gloves worn		2	4	
Breaking into ducts	High Temperature	w	2	2	4	 Ensure enough space to work safely Long Sleaves worn Temperature resistant gloves worn 		2	4	
Manual Sampling	Electrical Power	w	1	3	3	All equipment PAT tested 110v used Cables routed to avoid trip hazards	2	3	6	
Analyser Sampling	Use of compressed gases	w	2	5	10	Regulators inspected and in date Gases tied up or in racks Safety Glasses worn during use	2	3	6	
Analyser Sampling	Use of Fuel Gas	w	2	4	8	Regulator inspected and in date Gas tied up or in rack Safety Glasses worn during use		3	6	
Analyser Sampling	Electrical Power	w	1	3	3	All equipment PAT tested 110v used Cables routed to avoid trip hazards		3	6	
Sample train preparation and recovery	In van	w	1	3	3	Sufficient space to work safely Doors opened suffiently for ventilation Spill kit available	2	3	6	

Page 2 of 4

Effective Date: 25th August 2022

Point of Work Hazards Identified & Additional Controls

Who / what is at risk: W = Worker, P = Passers by / visitors, A = Assets, E = Environment

A akiniku	Hazard	Who is at	Risk severity as found			Combinal managings	Risk severity afte			
Activity	нахаго	risk?	L	S	R	Control measures	L	S	R	

	Name/s of Persons at Risk:	Po	osition	Date:13/04/2023 (sign below)	Date:14/04/2023 (sign below)	Date: (sign b	elow)	Date: (sign below)	Date: (sign below)	Date: (sign b	elow)	Date: (sign below)
				~ 1								
Donal (O Faogain		TL	05/-	Oil-							
James (O'Connor		Tech	Jaros (ono	Janes (ano							
							Haz	ard Severity				
			Ne	gligible (N) - 1	Slight (S) - 2			oderate (M) - 3	High (H) - 4		Ve	ry High (VH) - 5
	Effects on peop	le >	Negligible in work.	ijury, no absence from	Minor injury requiring first aid Injury leading to a lost treatment or headache, nausea, dizziness, mild rashes. Noise, Respiratory, Ski			irly stages of HAVs, iratory, Skin diseases	Involving a serious / life injury. Advanced stages Noise, Respiratory, Skin	of HAVs,	Death or Multiple Deaths.	
	Effect on Production, Process, Assets, or Reputation >			oss of function or with no damage to	Loss of production or minor damage to equipment requiring minor repair.		Localised damage to equipment requiring extensive repair, significant loss of function/production. Reputation of company may be affected in certain				of production or process. Reputation of company impacted within business community.	
	Effect on the environmen	nt >	Negligible in environmen	•	Impact to the environme	ent.		ollution incurring some	Severe pollution with shi localised implications ind significant restitution co-	curring		tion with long term and very high restitution
e	Very Unlikely (VU) - 1 A freak combination of factors would be requir an accident or incident to result.	ed for		1	2			3	4			5
Occurrence	Unlikely (U) - 2 A rare combination of factors would be require an accident or incident to result.	ed for		2	4			6	8	8		10
Could happen when additional factors are present		3	6			9	12			15		
Likelihood	Likely (L) - 4 Not certain to happen but an additional factor result in an accident or incident.	may		4	8			12	16			20
ij	Very Likely (VL) - 5 Almost inevitable that an accident or incident v result.	would		5	10			15	20			25
	LOW RISK				MEDIU	M RISK				HIGH RI	SK	

LOW RISK	MEDIUM RISK	HIGH RISK
May be acceptable, however, review task to see if the risk can be reduced further.	Task should only proceed with appropriate management authorisation after	Task must not proceed. It should be redefined or further control measures put in
	consultation with Safety Representative. Where possible the job should be	place to reduce the risks. The controls should be re-assessed for adequacy prior to
	redefined to take account of the hazards involved or the risk should be reduced	commencing with the work.
	further with additional control measures.	

Page 118 of 127 Page 4 of 4 Effective Date: 25th August 2022

CERTIFICATE OF ANALYSIS

MSSL reference: 23-53619

Report date: 15-05-2023

Customer: Element MTE UK Ltd Dublin

Unit D8

North City Business Park

North Road Ireland

Customer contact(s): donal.ofaogain@element.com

dublin.samples@element.com

Customer reference: EMT05627

Analysis started: 04-05-2023 Customer PO: -Customer sampling date: 13, 14-04-2023 Analysis complete: 15-05-2023 Date received: 03-05-2023 Conforming: Yes

This report shall not be reproduced except when in full without approval of the laboratory. Results only relate to the items tested. Results apply to the samples as received.

Conformance is contingent upon accurate information being provided by the customer and customer compliance with relevant sample handling and storage conditions prior to receipt at the laboratory.

All opinions and interpretations expressed within this report are outside Marchwood's scope of accreditation.

Accreditation Key:

Y: ISO 17025 UKAS M: MCERTS N: Non Accredited (S): Subcontracted

Notes:

Reported by: Sing Liem

Position: Senior Analytical Chemist

Approved by: Sebastian Dahl Position: Laboratory Manager

For/on behalf of Marchwood Scientific Services Ltd

5. Dom

1668

t: 0161 703 9170 w: www.cawood.co.uk/marchwood Marchwood, Unit 5, 60 Smithfold Lane, Worsley, Gr Manchester M28 OGP

www.cawood.co.uk

Analysis of target VOC(s) from charcoal tube(s) (226-01) by GC/MS (solvent desorption) (WI 3042) - front sections

MSSL sample ref:	23-53619-001	23-53619-002
Customer sample ref:	Target ed	1.2 EMT05627- R1 Tube Target ed Organics A2-3

Determinand	Units	LOD	Acc.		
Ethanol	μg	2.0	Υ	<2.0	<2.0
Isopropanol	μg	2.0	Υ	<2.0	<2.0
Methyl tert butyl ether	μg	0.5	М	<0.5	19
Toluene	μg	0.5	М	<0.5	1.0
Acetonitrile	μg	10	N	<10	<10
Tetrahydrofuran	μg	1.0	N	<1.0	<1.0
2-Methyltetrahydrofuran	μg	1.0	N	<1.0	<1.0
Heptane	μg	1.0	N	<1.0	5.9

Analysis of target VOC(s) from charcoal tube(s) (226-01) by GC/MS (solvent desorption) (WI 3042) - back section

MSSL sample ref:	23-53619-002
Customer sample ref:	1.2 EMT05627- R1 Tube Target ed Organics A2-3

Determinand	Units	LOD	Acc.	
Ethanol	μg	2.0	Υ	<2.0
Isopropanol	μg	2.0	Υ	<2.0
Methyl tert butyl ether	μg	0.5	М	<0.5
Toluene	μg	0.5	М	<0.5
Acetonitrile	μg	10	N	<10
Tetrahydrofuran	μg	1.0	N	<1.0
2-Methyltetrahydrofuran	μg	1.0	N	<1.0
Heptane	μg	1.0	N	<1.0

Analysis of target VOC(s) from silica gel tube(s) (226-10) by GC/MS (solvent desorption) - front sections

MSSL sample ref:	23-53619-003	23-53619-004
Customer sample ref:	1.3 EMT05627-B Blank Tube Methanol A2-	
	3	3

Determinand	Units	LOD	Acc.		
Methanol	μg	10	N	<10	<10

Analysis of target VOC(s) from silica gel tube(s) (226-10) by GC/MS (solvent desorption) - back section

MSSL sample ref:	23-53619-004
Customer sample ref:	1.4 EMT05627- R1 Tube Methanol A2- 3

Determinand	Units	LOD	Acc.	
Methanol	μg	10	N	<10

Analysis of target VOC(s) from charcoal tube(s) (226-01) by GC/MS (solvent desorption) - front sections

MSSL sample ref:	23-53619-005	23-53619-006
	1.5 EMT05627-B	1.6 EMT05627-
Customer sample ref:	Blank Tube	R1 Tube
	DMF A2-3	DMF A2-3

Determinand	Units	LOD	Acc.		
Dimethylformamide	μg	10	N	<10	<10

Analysis of target VOC(s) from charcoal tube(s) (226-01) by GC/MS (solvent desorption) - back section

MSSL sample ref:	23-53619-006
Customer sample ref:	1.6 EMT05627- R1 Tube DMF A2-3

Determinand	Units	LOD	Acc.	
Dimethylformamide	μg	10	N	<10

Analysis of target VOC(s) from charcoal tube(s) (226-01) by GC/MS (solvent desorption) (WI 3042 & 3048) - front sections

MSSL sample ref:	23-53619-007	23-53619-008
Customer sample ref:	Charcoal	1.8 EMT05627- R1 Tube Charcoal (Specific) A2-2

Determinand	Units	LOD	Acc.		
Ethanol	μg	2.0	Υ	<2.0	<2.0
Acetone	μg	0.5	Υ	3.1	0.9
Isopropanol	μg	2.0	Υ	<2.0	<2.0
Hexane	μg	0.5	М	<0.5	<0.5
Methyl ethyl ketone	μg	0.5	М	<0.5	<0.5
Ethyl acetate	μg	0.5	М	<0.5	<0.5
Benzene	μg	0.5	М	<0.5	<0.5
Methyl isobutyl ketone	μg	0.5	М	<0.5	<0.5
Toluene	μg	0.5	М	<0.5	<0.5
m/p-Xylene	μg	1.0	М	<1.0	<1.0
o-Xylene	μg	0.5	М	<0.5	<0.5
Dichloromethane	μg	10	Υ	<10	<10
Chloroform	μg	1.0	М	<1.0	<1.0
Carbon tetrachloride	μg	1.0	М	<1.0	<1.0
Trichloroethylene ⁽¹⁾	μg	1.0	N	<1.0	<1.0
Tetrachloroethylene	μg	1.0	N	<1.0	<1.0
Tetrahydrofuran	μg	1.0	N	<1.0	<1.0
Heptane	μg	1.0	N	<1.0	<1.0
Cyclohexane	μg	1.0	N	<1.0	<1.0
Cyclohexanone	μg	1.0	N	<1.0	<1.0

⁽¹⁾ This is a known breakdown product of 1,1,2,2-tetrachloroethane.

Analysis of target VOC(s) from charcoal tube(s) (226-01) by GC/MS (solvent desorption) (WI 3042 & 3048) - back section

MSSL sample ref:	23-53619-008
Customer sample ref:	1.8 EMT05627- R1 Tube Charcoal (Specific) A2-2

Determinand	Units	LOD	Acc.	
Ethanol	μg	2.0	Υ	<2.0
Acetone	μg	0.5	Υ	3.0
Isopropanol	μg	2.0	Υ	<2.0
Hexane	μg	0.5	M	<0.5
Methyl ethyl ketone	μg	0.5	М	<0.5
Ethyl acetate	μg	0.5	М	<0.5
Benzene	μg	0.5	М	<0.5
Methyl isobutyl ketone	μg	0.5	М	<0.5
Toluene	μg	0.5	M	<0.5
m/p-Xylene	μg	1.0	M	<1.0
o-Xylene	μg	0.5	M	<0.5
Dichloromethane	μg	10	Υ	<10
Chloroform	μg	1.0	М	<1.0
Carbon tetrachloride	μg	1.0	М	<1.0
Trichloroethylene (1)	μg	1.0	N	<1.0
Tetrachloroethylene	μg	1.0	N	<1.0
Tetrahydrofuran	μg	1.0	N	<1.0
Heptane	μg	1.0	N	<1.0
Cyclohexane	μg	1.0	N	<1.0
Cyclohexanone	μg	1.0	N	<1.0

⁽¹⁾ This is a known breakdown product of 1,1,2,2-tetrachloroethane.

WI 001 - Heavy metals

		Expanded Uncertainties (%)		
Determinand	Matrix	Imp (HNO ₃ /H ₂ O ₂)	Filter	Probe wash
Beryllium		7.4	9.0	9.0
Titanium		5.7	6.1	6.2
Vanadium		4.9	5.7	5.4
Chromium		5.1	11.3	5.5
Manganese		5.3	8.8	5.7
Cobalt		5.0	7.5	5.2
Nickel		6.3	13.1	5.7
Copper		6.1	5.5	5.4
Zinc		9.1	9.2	7.4
Arsenic		5.2	8.4	6.4
Selenium		5.5	7.9	5.9
Cadmium		5.0	5.0	3.8
Tin	•	5.5	7.2	5.8
Antimony	•	5.1	5.5	6.3
Thallium		6.5	7.2	6.9
Lead		5.3	6.5	5.7

WI 002 - Ammonia

		Expanded Uncertainties (%)
Determinand	Matrix	Imp (0.05M H ₂ SO ₄)
Ammonia		7.2

WI 003 - Anions

		Expanded Uncertainties (%)				
Determinand	Matrix	Imp (D/I Water)	Imp (0.1M NaOH)	Imp (0.05M H ₂ SO ₄₎		
Hydrogen Fluoride		6.3	-	-		
Hydrogen Chloride		5.4	-	-		
Hydrogen Bromide		-	-	6.0		
Chlorine		-	9.2	-		
Bromine		-	8.5	-		

WI 004 - Mercury

		Expanded Uncertainties (%)				
Determinand	Matrix	Imp (KMnO ₄)	Imp (K ₂ Cr ₂ O ₇)	Filter	Probe wash	
Mercury		8.5	7.0	13.8	9.3	

WI 005 - Particulates

		Expanded Uncertainties (mg)				
Determinand	Matrix	47mm GFA	47mm QMA	110mm GFA	110mm QMA	Probe wash
Particulates		0.427	0.434	0.475	1.98	0.589
Determinand	Matrix	37mm GFA	37mm QMA	-	=	-
Particulates		0.207	0.203	-	-	-

Conditioning temperatures for method WI005 are 180°C for preweight and 160°C for reweight

WI 007 - SO₂

		Expanded Uncertainties (%)
Determinand	Matrix	Imp (0.3% H ₂ O ₂)
SO ₂		3.7

WI 3048 - VOCs (SD)

		Expanded Uncertainties (%)
Determinand	Matrix	Charcoal Tube
Hexane		21.8
Methyl ethyl ketone		24.8
Ethyl acetate		18.4
Benzene		17.8
Methyl iso butyl ketone		15.7
Toluene		11.1
m/p-Xylene		10.8
o-Xylene		15.1
Chloroform		17.7
Carbon tetrachloride		22.8
Tetrachloroethylene		18.6

List of solvents used per process (to be added to the solvent suite)

	Emission point as per Licence	
A2-3	A2-2	
Tolnere	DCM	
THF		The state of the s
MTBE		
Methanol Acetonitrile		
Heptane	The state of the s	
OM F Ethanol		
2 Methyl THF		

Process Details Form

Licensee	ARRAN CHEMNAL	Contractor
Reg. Number		Contractor's Contact
Site Contact	SHANE NAUVATOR	Dala
Role	ENV SUPERVISE	
Signature	Share Naughtan	Signature

Emission Point as p	per A2 - 3	A2-2	neinting
License	1123	g O Rotogravure printin	g O Rotogravure printing
License	O Rotogravure printin	O Cement plant	O CEITICITY
	O Cement plant	O Cement plant	on O Electrical generation
	O Electrical generati	on O Electrical generati	O Steam boiler
Tues of measure	O Steam boiler	O Steam com	O Other:
Type of process	Other:	O-Other:	
	CHEMICAL	CHEMICAL	4
	MANUFACTUREN	G MANNEFACTERIA	
///	MANUFAC		
Load of Process			
(Rotogravure printing: the solvent type and content of			
the ink, the ink delivery rate,			
the press temperature, the status of abatement plant,			
printing rate (m/s), etc.;			
Coment plant: Clinker source			
and loading rate, fuel source and load rate; Power plant:			
at a trained generation (IVIVV)			
and fuel; Cement, chemical or charmaceutical plants; Rate o	at I		
-tons are recessed (tons/			
General manufacturing			
processes; Rate of items processed per hour;			
ream boilers: Percentage			
vith regards maximum apacity where appropriate			Albert
apacity where appropriate	Piles	O Bag filter	O Bag filter
	O Bag filter O Electrostatic precipitator	O thectrostatic precipitator	O Electrostatic precipitator
		O Cyclone	O Cyclone
	O Cyclone	O Thermal oxidiser	O Thermal oxidiser
	Offhermal oxidiser	O'Active carbon bed	O Active carbon bed
	O Active carbon bed	O NSCR	O NSCR
	O NSCR	O SCR	OSCR
	O SCR	O Dry scrubber	O Dry scrubber
	O Dry scrubber	Owner scrubber	O Wet scrubber
	Orwat scrubbar	O Lime injection	O Lime injection
	O Lime injection	O Biofilter	O Biofilter
	O Biofilter	O Mone	O None
	O None	O Owners	O Other:
	O Others	O CHARA	a anian

FOLLOW-UP ACTIONS

The licensee is required to complete the actions outlined in this site visit report within the specified timeframes. Where required, the licensee shall also respond to actions specified in Compliance Investigations and/or submit a response to this site visit report via the EDEN system. The licensee shall maintain a documentary evidence, for review by the Agency, that the prescribed actions were completed within the required timeframe.

(i) Compliance Investigations

The Agency may generate a Compliance Investigation through the EDEN system and issue instructions and actions to the licensee. The licensee will receive notification when an instruction or action is issued and the licensee must respond to the actions within the Compliance Investigation within the specified timeframe.

(ii) Response to Site Visit Report

Where the licensee is requested to (or wishes to) respond to the Agency in relation to this site visit report, the licensee may select the 'Make a Response' link on the Site Visits page in EDEN where a .pdf document containing the response can be attached and submitted. The response should include details of the actions taken by the licensee to address the issues raised in this site visit report and the target completion dates. This Licensee Public Response provides the licensee with an opportunity to inform both the Agency and the public about the implementing of actions set out in the Agency site visit report. The response must be submitted within 21 calendar days of the issue date of this site visit report.

(iii) Publication of Reports

This site visit report will be published on the EPA's website, www.epa.ie, 30 calendar days after the site visit report issue date.

Any licensee response to this site visit report will be published on the EPA's website simultaneously (i.e. 30 calendar days after the site visit report issue date).

Please note that licensees are required to comply with the conditions of the licence at all times, and where non-compliance occurs, compliance must be restored within the shortest possible time. These actions will be verified during subsequent Agency visits. Please quote the above Inspection Reference Number in any correspondence in relation this Report.